Caracterización del compost producido en España

Informe 2003-2005

Convenio IGME-ESAB-MIMAM

Presentación

En esta presentación se resumen los resultados obtenidos a lo largo del Convenio de colaboración entre la Escola Superior d'Agricultura de Barcelona (ESAB) y el Instituto Geológico Minero de España (IGME) (2003-2005) para la **Caracterización del compost producido en España**, realizado a propuesta del Ministerio de Medio Ambiente (MIMAM). Se adjuntan también resultados de controles realizados sobre plantas de compostaje de residuos municipales catalanas, procedentes de los Convenios entre la ESAB y el Servei de Medi Ambient de la Diputació de Barcelona (SMADB) (2002-2005); es así gracias a un acuerdo entre las distintas administraciones implicadas para poder discutir y comparar los datos conjuntamente lo que permitirá un mejor aprovechamiento del trabajo realizado.

Para la valoración de la calidad del compost se han tenido en cuenta parámetros incluidos en la legislación española además de otros que se han considerado de elevado interés para la valoración agronómica de los composts y el posible diagnóstico sobre funcionamiento de las plantas.

Se analizan los resultados conjuntamente y también diferenciándolos por grupos según las materias tratadas (Residuos Sólidos Urbanos-RSU, Fracción Orgánica de Residuos Municipales procedente de recogida selectiva –FORM, Lodos, Restos Vegetales y Estiércoles).

Han participado:

Ana Rodríguez (MIMAM), Antonio Callaba (IGME) y Domènec Cucurull (SMADB) proponiendo los estudios y haciendo posible su financiación.

Oscar Huerta y Marga López (ESAB) en las tomas de muestra y realización de los análisis en el laboratorio.

Laura Condes y Jordi Pijoan (ESAB) también han colaborado en ciertas determinaciones analíticas.

Ines Iribarren y Paula F. Canteli (IGME) en el contacto con las distintas comunidades autónomas y plantas de tratamiento, así como en la realización y recopilación de las encuestas y la toma de muestras.

Oscar Huerta, Marga López, Montserrat Soliva y Jordi Valero (ESAB) han realizado conjuntamente el estudio y la discusión de los resultados.

Todos los responsables de las distintas comunidades y de las plantas de compostaje que han dado facilidades para la realización del trabajo.

Índice

1.	Introducción	3
2.	Datos recopilados para el estudio	4
	⇒ Clasificación de las plantas de compostaje	4
3.	Metodología	6
4.	El muestreo	7
5.	Determinaciones analíticas	8
	⇒ Determinación de la granulometría y del contenido en impurezas	8
	⇒ Test de Autocalentamiento	10
	Legislación aplicable vigente	
7.	Valoración de distintos parámetros	14
	⇒ Evolución del contenido en materia orgánica	14
	⇒ Evolución de las formas de nitrógeno	14
	⇒ Relación entre parámetros	15
8.	Resultados	17
	⇒ Contenido en impurezas	
	⇒ Relación entre impurezas y granulometría	
	⇒ Conjunto de resultados	
	⇒ Comparación entre RSU 2003-2005 y FORM 2005	
	⇒ Perfiles de composición de metales	25
9.	Parámetros no contemplados en el RD 824/2005 separados por	
	origen de los materiales de los entrada	27
10	. Cumplimiento de RD 824/2005	31
11	. Índice de saturación	34
12	. Resumen y consideraciones finales	36
An	ejos	
	Encuesta de planta	
	Histórico de muestra	
	Estado de la planta	
	Resultados de muestras de compost por comunidades	
	Resumen numérico descriptivo	
	Características de las plantas visitadas	

Informe 2003-2005

Introducción

Este estudio se ha llevado a cabo entre noviembre de 2003, cuando se tomaron las primeras muestras, y julio de 2005. Durante todo ese período, se han tomado muestras de compost de distintintos orígenes, en todas aquellas comunidades autónomas que, voluntariamente, han participado en el proyecto. Así, se ha pretendido hacer un acercamiento a la caracterización del compost producido en España, pudiendo valorarlo desde una perspectiva global o desde la perspectiva de cada comunidad.

Las visitas a las plantas de compostaje han permitido reunir mucha información acerca de los distintos sistemas de tratamiento en función de las materias primas tratadas y de las cantidades, aunque en algunas ocasiones ha sido dificil obtener información concreta. También así se ha podido ver el estado de cada planta, el nivel de tecnificación y su grado de saturación, aspectos todos ellos relacionados con la posibilidad de realizar el proceso correctamente y además, obtener un producto de calidad.

El documento recoge los procedimientos seguidos en el muestreo, la metodología analítica y la interpretación de los resultados. Se ha hecho especial hincapié en la interpretación de los resultados, dado que puede ayudar a valorar la gestión en la planta de tratamiento y los materiales tratados. Los resultados obtenidos se presentan relacionados con el RD824/2005 siempre y cuando éste marque valores límite. También se representan otros parámetros de los cuales la legislación no exige valores límite pero que proporcionan información interesante sobre el proceso y el producto.

Este informe se complementa con los informes de planta, donde se detallan las muestras tomadas y sus analíticas, y el archivo de fotos de plantas, donde se muestran diversas perspectivas de aquellas plantas que permitieron tomar fotos.

Datos recopilados para el estudio

Para este informe se han recogido resultados de análisis de muestras de compost final tomadas entre 2002 y 2005, procedentes tanto del convenio con el SMADB como del convenio IGME-MIMAM. Se ha de mencionar que, además de compost, también durante este período se recogieron muestras de medio proceso y de materias primeras diferentes de RSU, FORM, estiércol y lodos de depuradora. Se muestrearon un total de 91 plantas y se obtuvieron 298, de las cuales 248 correspondieron a compost comercial.

Clasificación de las plantas de compostaje

Las tablas que se presentan a continuación (tablas 1, 2, 3 y 4) clasifican las plantas según hayan sido o no visitadas, por sistema de compostaje, por las materias primas que tratan y por la capacidad.

Tabla 1. Por total de plantas muestreadas				
91	86	Nacionales		
	5	Extranjeras		
91	77	Visitadas		
	14	No visitadas		
Plantas visitadas				
77	53	IGME-MIMAM		
	24	SMADB		

Tabla 2. Por sistema de comp				
49	IGME-MIMAM			
17	SMADB			
13	IGME-MIMAM			
9	SMADB			
	49 17 13			

Tabla 3. Por materias primas				
IGME-MIMAM		Total		
2	FORM	22		
30	RSU	36		
10	LODOS	13		
4	Estiércol	8		
2	RV	5		
5	MIXTAS	7		

Tabia 4. Por toneiadas tratadas↑				
Capacidad (tn/año)	Total			
≥ 100.000	12			
[50.000- 100.000[17			
[20.000 – 50.000[16			
[10.000 – 20.000[10			
< 10.000	14			
* no están todas las plantas				

En las tablas 5 y 6 se resumen las plantas de compostaje muestreadas y el número de muestras tomadas y analizadas; se indica la comunidad a que pertenecen las distintas plantas y debe señalarse que el mayor número de muestras tomadas en Catalunya se debe al hecho de que dentro de los convenios mantenidos con el Servei de Medi Ambient de la Diputació de Barcelona cada año se repiten dos veces los muestreos en las plantas de compostaje de FORM existentes en Catalunya (tabla 6). En la figura 1 se indica el numero y tipo de planta muestreado dentro del convenio MIMAM-IGME y en las figuras 2 y 3 se informa de las muestras tomadas por comunidades y de la capacidad de tratamiento.

Tabla 5. Plantas y muestras por origen

Tabla 5. Plantas y mi	uestras por	origen
Origen	Plantas	Muestras
Andalucía	14	17
Aragón	1	2
Baleares	4	7
Canarias	1	1
Castilla La Mancha	6	8
Castilla León	7	7
Catalunya	37	177
La Rioja	3	4
Madrid	1	2
Navarra	2	4
País Vasco	2	3
Valencia	8	11
Extranjeras	5	7

Tabla 6. Plantas y muestras catalanas por origen

Catalunya

	}		>
		Plantas	Muestras
FORM	5	14	123
RSU	(2	3
LODOS		8	29
Estiércol		4	8
RV	ኢ ~	3	10
MIXTAS	γ	6	2

En el caso concreto de Catalunya, se visitaron 37 plantas (14 convenio IGME-MIMAM y 23 convenio SMADB) y se tomaron un total de 175 muestras (25 corresponden al convenio IGME-MIMAM y 150 a los convenios con SMADB).

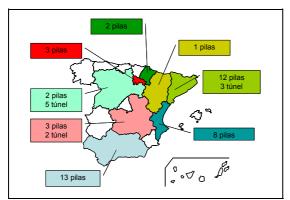


Figura 1. Tipo de planta por comunidad (Convenio IGME-MIMAM)

Figura 2. Número de muestras por comunidad (Convenio IGME-MIMAM)

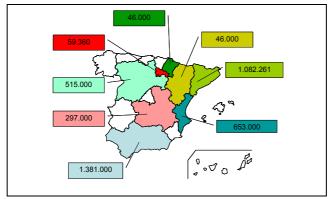


Figura 3. Capacidad de tratamiento (Toneladas) por comunidades autónomas, en los casos que se ha podido conocer los datos

Metodología

La metodología seguida en cada uno de los proyectos ha sido distinta, ya que con las plantas del convenio SMADB ha sido más facil contactar, por el tiempo que ya se lleva trabajando con ellas. En el caso del convenio con IGME-MIMAM, la toma de contacto ha sido más compleja, implicando a responsables de las comunidades autónomas (tabla 7).

Convenio ESAB-MIMAM-IGME

- Contacto con los responsables de la comunidad autónoma
- Contacto con las plantas a través de MIMAM-IGMF
- 3. Visita a planta, realización de encuesta y toma de muestras
- 4. Envío de la muestra a ESAB y conservación
- 5. Análisis de las muestras en la ESAB
- 6. Análisis de los datos
- 7. Elaboración de informes de planta

Convenio ESAB-SMADB

- 1. Contacto con las plantas y/o empresas responsables
- 2. Visita a planta, realización de encuesta y toma de muestras (dos veces al año)
- 3. Análisis de las muestras en la ESAB
- 4. Análisis de los datos
- 5. Elaboración de informes de planta

Tabla 7. Metodología seguida para cada uno de los convenios

El muestreo

Las visitas a las plantas, además de obtener una muestra representativa, han permitido en la mayoría de los casos obtener la máxima información de las plantas y de la historia concreta de las muestras tomadas. Para ello, se dispone de tres formularios que clasifican esta información (Anejos 1, 2 y 3): Encuesta de planta, Histórico de muestra y Estado de la planta. Además, también se intenta recoger la impresión de los gestores de planta, sus preocupaciones y sus problemas.

Figura 4. Fotos de muestreo de distintos materiales

Determinaciones analíticas

Según el tipo de determinación se realizaron las analíticas sobre muestra húmeda o sobre muestra seca (figura 5). Se han escogido las determinaciones que pide la legislación (12) y otras que, desde la ESAB, se han considerado útiles para diagnosticar sobre el funcionamiento de las plantas y sobre la posible aplicación agronómica; en total se han analizado por duplicado 23 parámetros para cada muestra.

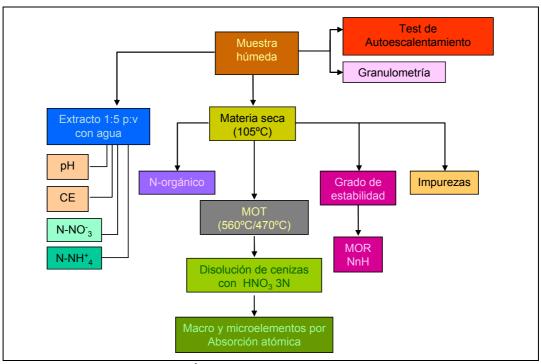


Figura 5. Determinaciones analíticas a las muestras

Determinación de la granulometría y del contenido en impurezas

La granulometría se determina sobre la muestra húmeda, haciendo pasar una cantidad determinada de muestra por diferentes tamices sometidos a vibración, tal y como recoge la figura 6. Los cedazos de luz utilizados en este proyecto son diferentes a lo exigido en la actual legislación. A diferencia de lo que viene haciéndose habitualmente en la ESAB, el nuevo decreto propone el uso del tamiz de 25mm como baremo de admisión (ver tabla 9).

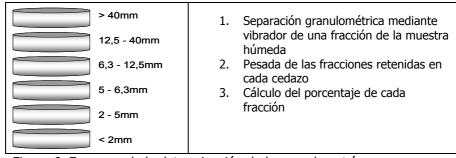


Figura 6. Esquema de la determinación de la granulometría

Mención especial merece la determinación de impurezas, que se inició con el proyecto IGME antes de aparecer el reciente RD sobre fertilizantes. El procedimiento que se acostumbra a aplicar en la ESAB es el siguiente:

- 1. Secado de muestra
- 2. Retirada de impurezas de la muestra seca separando por tipos (vidrio, plástico, papel, metal, textil, piedras, etc.)
- 3. Pesada de las diferentes porciones
- 4. Cálculo del porcentaje total de impurezas y de las diferentes fracciones

El contenido en impurezas (figura 7) y la distribución granulométrica es muy diferente entre las muestras

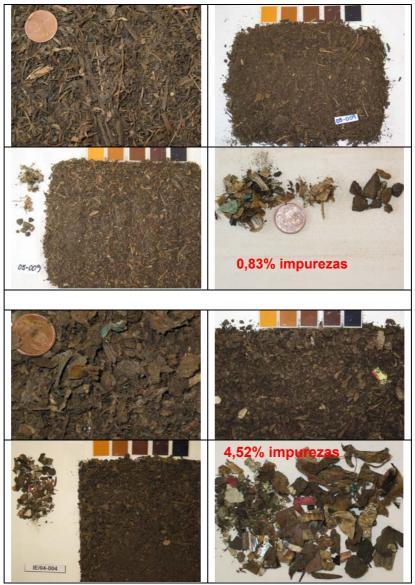


Figura 7. Aspecto y contenido en impurezas de dos muestras

Test de Autocalentamiento

El Test de autocalentamiento mide el incremento de temperatura producido por la actividad microbiana de una muestra en unas condiciones determinadas dentro de un recipiente aislado térmicamente. Este método está indicado para valorar la madurez del material de forma sencilla, ya que se puede realizar en la misma planta de compostaje sin tener que recurrir a laboratorios externos.

Sin embargo, el establecimiento de las condiciones de trabajo debe ser muy cuidadoso para obtener resultados representativos. En algunas ocasiones no se produce el calentamiento esperado debido a la historia o a determinadas características de la muestra y/o a las condiciones de trabajo.

Figura 8. Test de Autocalentamiento

Para homogeneizar las condiciones de trabajo, las muestras se criban a 10mm y se procura que para el inicio del test tengan un 50% de humedad. Se realiza una mezcla homogenea y se introduce dentro del vaso Dewar junto con una sonda de temperatura conectada a un datalogger, que permite realizar registros cada media hora y durante nueve días. El resultado del experimento produce una curva que relaciona tiempo con incremento de temperatura (figura 9).

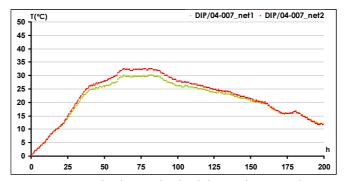


Figura 9. Ejemplo de resultado del test de autocalentamiento

Tabla 8. Clasificación de la estabilidad (TMECC, 2002)

1 / /		
Incremento máximo de temperatura neta (ta _{yaso} – ta _{ambiente})	Grado	Tipo de compost
< 10°C	V	Estable
10 – 20°C	IV	Estable
20 – 30°C	III	Activo
30 – 40°C	II	Activo
> 40°C	I	Fresco

Los resultados se clasifican en función del incremento de temperatura neta, es decir, restando la temperatura ambiente del incremento dentro del recipiente (tabla 8).

Legislación aplicable vigente

Como ya se ha comentado en la introducción, en julio de 2005 ha aparecido la nueva normativa relativa a productos fertilizantes. En ella se aprecian diferencias importantes respecto la anterior así como un acercamiento al tipo de la propuesta europea sobre gestión de productos biodegradables, en su segundo borrador. En el RD824/2005 se hace una nueva clasificación de productos fertilizantes. El compost queda englobado dentro del Grupo 6: enmiendas orgánicas, diferenciándose cuatro tipos:

- ⇒ Enmienda orgánica Compost: compost obtenido a partir de materiales orgánicos biodegradables según el anejo IV del mismo real decreto y en el que se incuiría el compost de RSU, de FORM y de lodos urbanos
- ⇒ Enmienda orgánica Compost Vegetal: compost obtenido exclusivamente a partir de hojas, hierba cortada y restos vegetales o de poda
- ⇒ Enmienda orgánica Compost de Estiércol: compost obtenido exclusivamente a partir de estiércol
- ⇒ Enmienda orgánica Vermicompost: compost obtenido a partir de materiales orgánicos por digestión con lombrices

Tabla 9. Características exigidas a los diferentes tipos de compost según RD824/2005¹

Compost	Compost vegetal	Compost de estiércol	Vermicompost
% H: 30%-40% C/N < 20 % MOT > 35% Granulometría: piedras y gravas Ø>5mm menos del 5% Impurezas Ø>2mm menos del 3% 90% partículas Ø < 25mm	% H : 30%-40%	% H : 30%-40%	% H: 30%-40%
	C/N < 15	C/N < 20	C/N < 20
	% MOT > 40%	% MOT > 35%	% MOT > 40%
	Ausencia de impurezas	Ausencia de impurezas	90% partículas Ø < 25mm

En este nuevo real decreto, se establecen tres clases distintas en función del contenido en metales (tabla 10), que presentan una importante reducción respecto los máximos establecidos en la Orden de 28 de mayo de 1998.

Tabla 10. Límites de metales pesados para compost según las clases establecidas por el RD824/2005

acguir las clases c	.Stabictida	s poi ci il	7027/2003
	Clase A	Clase B	Clase C
Cd (mg/kg s.m.s.)	0,7	2	3
Cr (mg/kg s.m.s.)	70	250	300
Cu (mg/kg s.m.s.)	70	300	400
Hg (mg/kg s.m.s.)	0,5	1,5	2,5
Ni (mg/kg s.m.s.)	25	90	100
Pb (mg/kg s.m.s.)	45	150	200
Zn (mg/kg s.m.s.)	200	500	1000

En la tabla 11 se compara las dos normativas a partir del porcentaje de reducción que se produce para cada una de las tres clases del nuevo real decreto respecto la orden de de 1998.

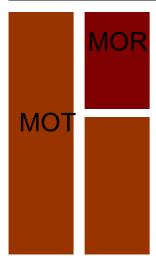
Informe 2003-2005 12

-

¹ Para la comparación de resultados con la legislación se ha considerado los valores de MOT y contenido en impurezas sobre materia seca

Tabla 11. Porcentaje de reducción máximo de metales: comparación entre Orden de 28/5/1998 y RD824/2005

Elemento	Orden de 28/5/1998	RD 824/2005 Clase A (%)	RD 824/2005 Clase B (%)	RD 824/2005 Clase C (%)
Zn	100	82	55	9
Cu	100	84	33	11
Ni	100	79	25	17
Cr	100	83	38	25
Pb	100	85	50	33
Cd	100	93	80	70
Hg	100	93	79	64


Si se considera el valor máximo de contenido en metal de la orden de 1998 como el 100%, la clase A del RD824/2005 es la que atribuye las reducciones más importantes, llegando a valores superiores al 90% para metales como el cadmio y el mercurio.

En resumen, para el cumplimiento de la legislación vigente es necesario controlar %H, %MOT, C/N, granulometría e impurezas y contenido en metales. Sin embargo, como se expone a continuación, se han determinado otros parámetros de interés agronómico, como pH, CE, contenido en macro y micro nutrientes, así como variables de interés para el proceso y la aplicación, tales como %MOR, %GE o formas de nitrógeno.

Valoración de distintos parámetros

Los resultados obtenidos deben de ser interpretados correctamente y dar a cada uno el valor que tiene respecto a los materiales tratados, el proceso de compostaje o la calidad del compost para así obtener la máxima rentabilidad del trabajo realizado. Para ello, en los informes que se han suministrado a cada planta se indica como se deben interpretar los diferentes parámetros tal y como se detalla a continuación.

Evolución del contenido de la materia orgánica

MOT. Es el contenido en materia orgánica total, determinada por calcinación.

MOR. Es el contenido en materia orgánica resistente, determinada por ataque de la muestra en medio ácido y condiciones controladas.

GE. Cociente resultado de la dos parámetros anteriores:

GE = MOR/MOT expresado en %

Durante el proceso estos parámetros evolucionan según:

MOT. Disminuye al ser consumida por la actividad metabólica de los micro y macroorganismos, presentes durante todo el proceso de compostaje.

MOR. Aumenta conforme avanza el proceso biooxidativo debido a:

- ♦ El incremento relativo de las ligninas como resultado de la oxidación las formas más degradables de la MOT.
- ♦ Formación de compuestos asimilables a las sustancias húmicas del suelo a partir de polímeros lignocelulósicos.

GE. Como relación entre MOR y MOT, según avanza el proceso aumenta el valor de este parámetro.

En algunos casos se puede encontrar un producto con un contenido bajo de materia orgánica total, no porque haya tenido una buena transformación sino porque se ha partido de una materia prima con bajo contenido, como cuando proceden de RSU con elevada proporción de impropios.

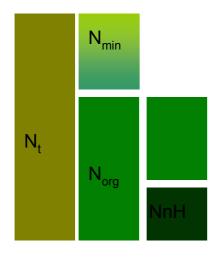
Evolución de las formas de nitrógeno

El contenido en las distintas formas de nitrógeno ofrece información del proceso. Las condiciones en que se realiza (aireación y temperatura) pueden favorecer la pérdida de nitrógeno en forma amoniacal. Deben cuidarse las mezclas a tratar y las condiciones de trabajo para que esto no ocurra.

Nitrógeno Amoniacal

Su presencia en cantidades elevadas pueden responder a:

- ⊙ Los materiales iniciales lo contenían en proporciones importantes o bien presentaban un nitrogeno orgánico facilmente mineralizable
- ⊙ La mezcla inicial presentaba una C/N baja que fuerza la masa microbial a desaminar para obtener energía
- ⊙ El proceso se desarrolla bajo condiciones de anaerobiosis.


Nitrógeno Nítrico

En la parte final del proceso de compostaje la presencia de nitratos indica mantenimiento de condiciones aerobias.

Nitrógeno no hidrolizable o resistente

Su presencia responde:

- ⊙ Algunos de los polímeros lignocelulósicos transformados durante el compostaje presentan grupos reactivos donde pueden fijarse formas de nitrógeno.
- O Formas de nitrógeno resistentes propias de los materiales de entrada.

- ✓ Una mayor presencia de nítrico y una menor presencia de amoniacal, así como una elevada proporción de nitrógeno no hidrolizable nos está indicando que:
- ✓ El proceso ha sido aeróbico
- ✓ La nitrificación se ha establecido correctamente
- ✓ La relación C/N "real" y total planteada inicialmente ha permitido un correcto balance de nutrientes para la masa microbial:
 - Carbono como fuente energía
 - Nitrógeno como fuente proteína
 - La fijación del nitrógeno a los polímeros con grupos reactivos

Relación entre parámetros

Se ha intentado establecer una relación entre parámetros mediante gráficos de estrella que dibujen los valores deseables para cada parámetro. Se han elaborado tres figuras patrón para compost de RM y tres para compost de lodos a partir de los datos y de la información de que se dispone en la ESAB. Posiblemente sólo sea una aproximación que debe ir mejorándose pero puede ser un punto de partida para la discusión.

En estas figuras permiten una visión rápida de los resultados. Se aplican factores de corrección para facilitar la visualización en algunos de los parámetros. Las tres figuras elaboradas agrupan los parámetros de la siguiente manera:

- ❖ CEx10, %Norgx20, ppm N-NH4+/20, %GE, %MOT
- ❖ %MOT, %MOR, %GE
- ❖ %Norg, %P, %K

En las figuras del informe que se envía a la planta, los resultados obtenidos se superponen al modelo en otro color para ver el ajuste (figuras 10 y 11).

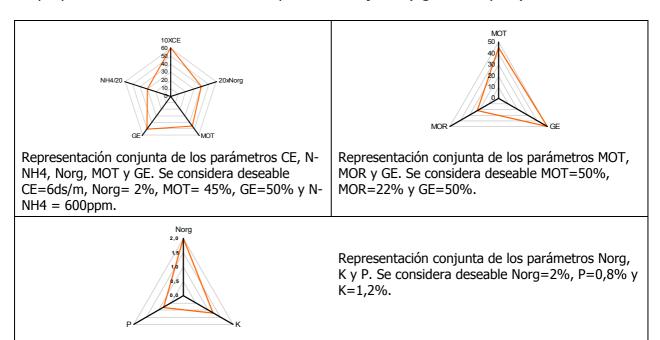


Figura 10. Gráficos de estrella para compost de RM

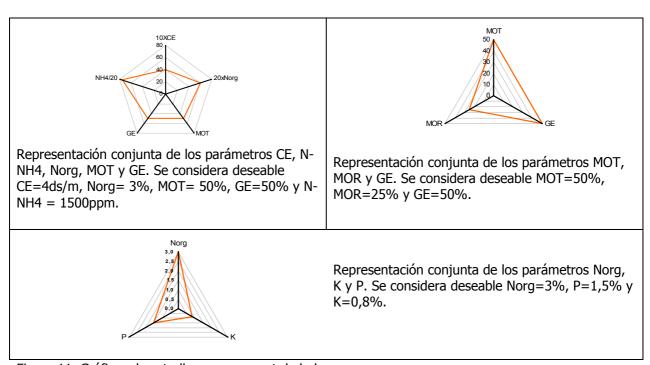


Figura 11. Gráficos de estrella para compost de lodos

En los composts de lodos siempre es esperable una conductividad eléctrica mucho más baja y contenidos superiores en nitrógeno y fósforo pero no en potasio.

Resultados

Contenido en impurezas

La figura 12 recoge el contenido en impurezas de las muestras analizadas expresado sobre peso seco y ordenadas de menor a mayor; el hecho de que en en la primera gráfica, representativa de todas las muestras, y en la de lodos no haya barras es debido a que hay muestras libres de impurezas. La línea verde señala el 3% de la legislación y la rosa la media. Las muestras de RSU son las que contienen más impurezas, mientras que los lodos las que menos, siendo éstas principalmente piedras.

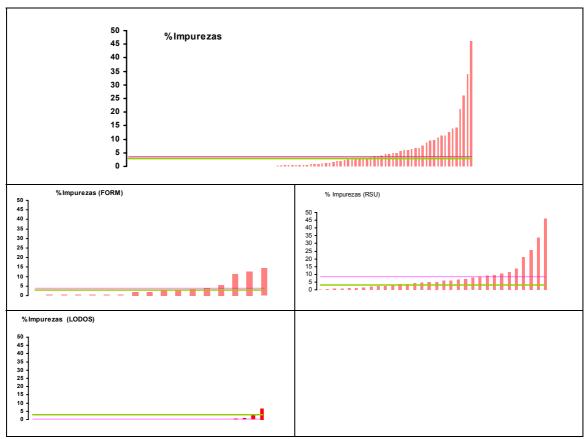


Figura 12. Contenido en impurezas de las muestras analizadas

La mayoría de muestras que exceden el 3% marcado por la legislación corresponden a muestras de compost de RSU, con valores máximos del 40% en algún caso. Se debe recordar que el cálculo de este parámetro se hace en seco y sobre muestra seca y que las muestras con mayor proporción de impurezas se debe a materiales pesados como vidrios y piedras.

Relación entre impurezas y granulometría

La relación entre impurezas y fracción granulométrica de las muestras analizadas sugiere que las plantas optan por el uso de tamices con luces de paso pequeñas para reducir la cantidad de impurezas en el compost final. La figura 13 recoge los resultados de algunas de las muestras que lo ponen de manifiesto.

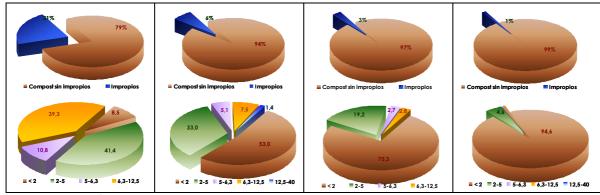


Figura 13. Gráficas correspondientes a cuatro muestras ordenadas de izquierda a derecha de forma ascendente en función del porcentaje en peso seco de impurezas. Debajo la distribución granulométrica para cada una.

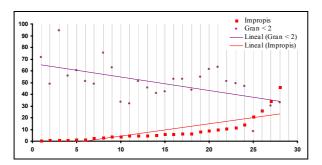


Figura 14. Grafica del contenido en peso de las impurezas y la proporción de finos (tamaño de partícula inferior a 2mm).

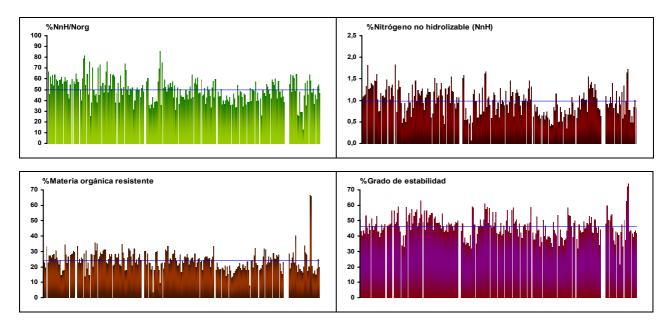
La figura 14 representa gráficamente el contenido en peso de impropios (en rojo) y la proporción en peso de la fracción granulométrica inferior a 2mm de tamaño (en morado). Este tipo de gráfico apoya esta la observación anteriormente planteada.

Habría que hacer balances de rendimiento (materiales entrados, rechazados y compost producido) para ver cuál es el coste de esta separación mecánica de las impurezas del compost y su relación con el tipo de materiales que entran en la planta.

Conjunto de resultados

Los resultados de los análisis realizados se muestran en forma de gráfica, aunque el anejo 4 contiene la tabla de resultados. Las figuras que se muestran a continuación presentan los resultados correspondientes a todo el conjunto de muestras muestras de compost final (2002 y 2005). Para cada figura, además de los valores para cada parámetro, aparecen una serie de líneas que se codifican de la siguiente manera²:

² Se ha considerado los valores correspondientes a "*Enmienda Orgánica Compost*", dado que es la clase a la que pertenecen la mayor parte de las muestras analizadas

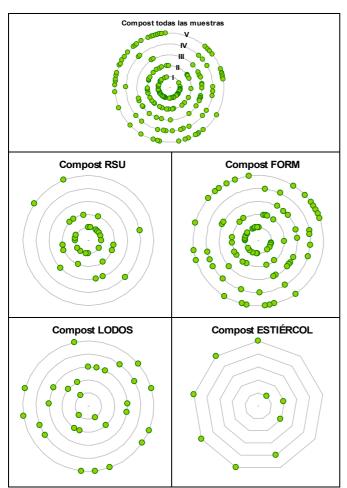

Media para cada parámetro
 Valor mínimo para el RD 824/2005, excepto en los metales pesados
 Valor máximo para el RD 824/2005, excepto en los metales pesados

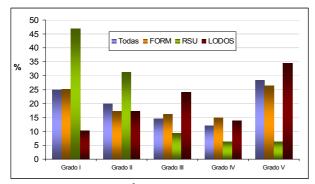
Para los metales pesados:

Media para el parámetro
Máximo para ser aceptado en la clase A de RD 824/2005
Máximo para ser aceptado en la clase B de RD 824/2005
Máximo para ser aceptado en la clase C de RD 824/2005

La primera observación que se desprende de las figuras es la dispersión de los resultados en la mayor parte de parámetros. Esto es debido a que en las gráficas se incluyen todas las muestras independientemente de su origen.

Distribución de las muestras según grado del Test de Autocalentamiento




Figura 15. Distribución de resultados del TA

La figura 15 muestra la distribución de los resultados del Test de Autocalentamiento, tanto para el conjunto de muestras como separados por materias primas. Se debe de recordar que este test pretende valorar la estabilidad del compost; para ello, clasifica muestras en cinco clases en función del incremento de temperatura, resultando más inestables las de grado I y más estables las de grado V.

Se puede observar una dispersión importante entre muestras, tanto en conjunto como por grupos, aunque se puede destacar que las muestras de RSU tienden a agruparse hacia el grado I. En el caso del compost de estiércol debido al bajo número de muestras no se puede considerar que tiendan a ser más o menos estables.

Según la figura 16 las muestras de compost de RSU se agrupan en los grados I y II, mientras que las de FORM tienden a ser más estables. Sin embargo, se debe comentar

que las muestras de lodos, que suelen alcanzar grados elevados, que sería indicativo de estabilidad, no es así cuando se comparan con otros parámetros de estabilidad, como el %GE o el contenido en nitrógeno amoniacal.

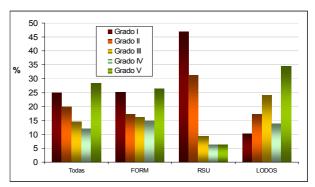
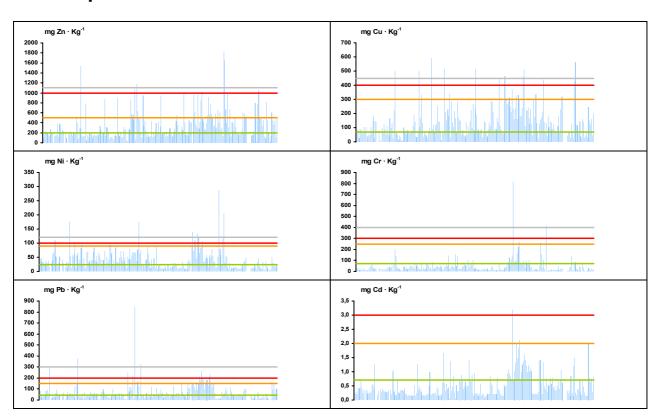
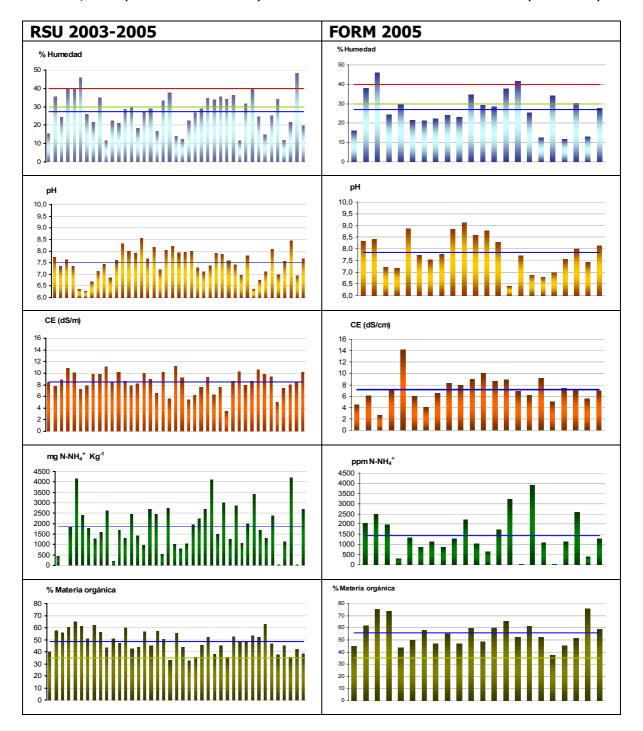
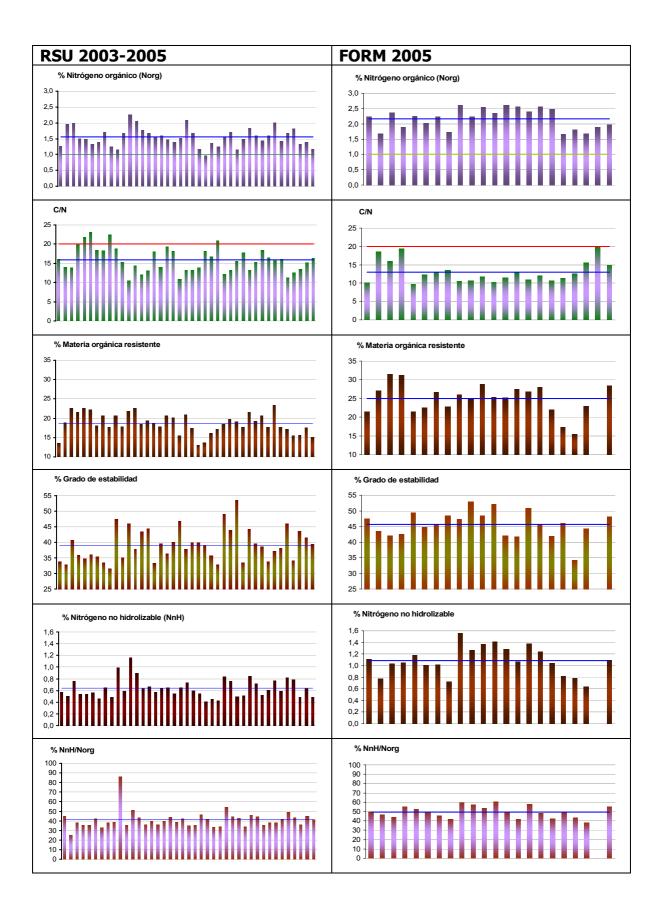
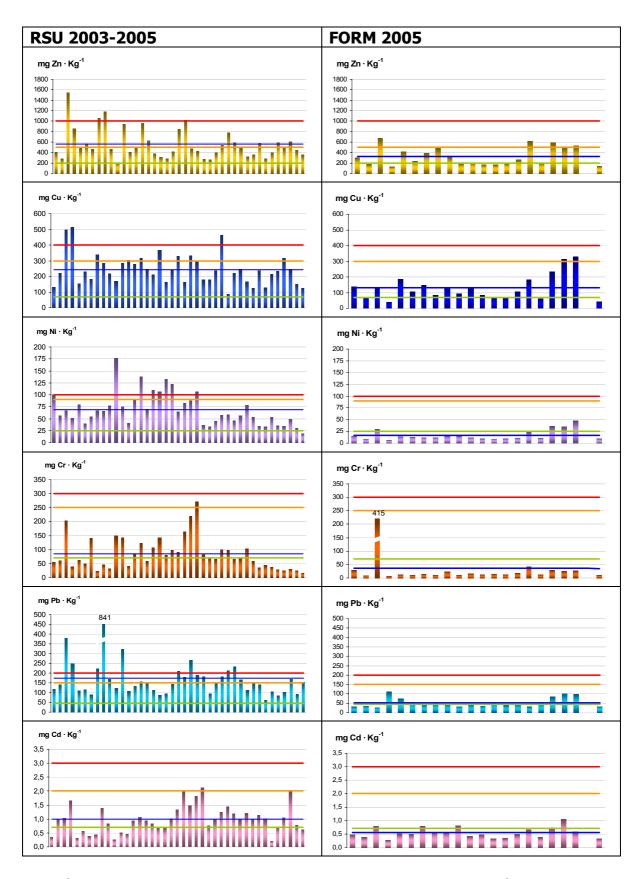



Figura 16. Distribución de porcentajes de grados de TA para el conjunto de muestras y por grupos de materias primas

Tabla 12. Porcentaie de grados de TA agrupados por materias primas


Table 12: 1 dicentaje de grades de 17 tagrapades per materias primas					
	%	Todas	FORM	RSU	LODOS
Grado I		<u>2</u> 5	25	47	10
Grado II		20	17	31	17
Grado III	[15	16	9	24
Grado IV		12	15	6	14
Grado V		28	26	6	34


Metales pesados



Comparación entre RSU 2003-2005 y FORM 2005

Las siguientes figuras comparan los resultados de RSU comprendidos entre 2003 y 2005, la mayoría de los cuales pertenecen a muestras del convenio con IGME-MIMAM, con las muestras de FORM de Catalunya del presente año (2005). Igual que en las anteriores, se representa la media y los valores de la normativa en caso que los haya.

Los parámetros de estabilidad y el contenido en metales resultan más favorables para las muestras de compost de FORM.

Perfiles de composición en metales

Con objeto de comparar la composición entre metales se han elaborado los perfiles para las medias de compost de tres comunidades (Andalucía, Catalunya y C. Valenciana) y la media de las muestras de compost de lodos. La figura 17 recoge el perfil de metales en la columna de la izquierda, en mg kg⁻¹, y en la derecha se ha calculado el porcentaje de cada metal sobre la suma total de los metales considerados.

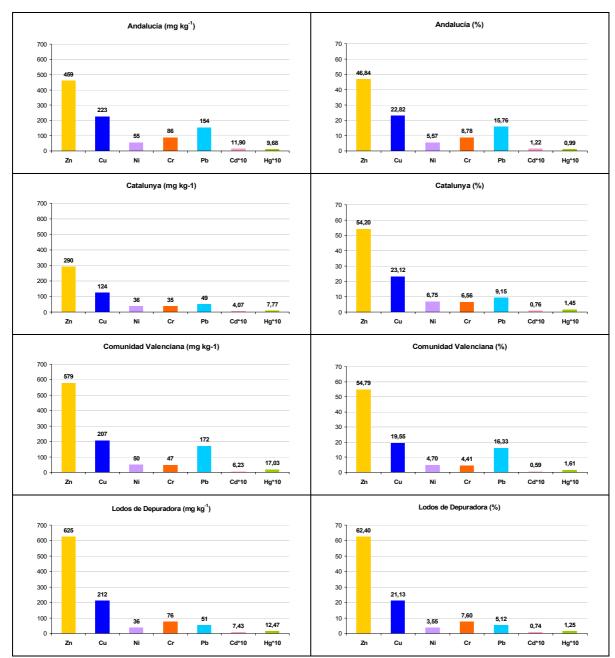


Figura 17. Perfil del contenido en metales del promedio de las muestras tomadas en tres comunidades

Catalunya, con mayor incorporación de la recogida selectiva, es la que presenta los composts con contenidos más bajos mientras que Andalucía y Valencia, con RSU como material de partida, presentan un contenido similar. No obstante y pese a la diferencia

de valores entre Catalunya y estas dos comunidades son Zn, Cu y Pb los que, respectivamente, se presentan en mayor proporción para cada una de las comunidades.

Tabla 13. Comparación entre porcentajes de metales para tres comunidades y una media de lodos

%	Zn	Cu	Ni	Cr	Pb	Cd	Hg
Andalucía	46,84	22,82	5,57	8,78	15,76	0,12	0,10
Catalunya	54,20	23,12	6,75	6,56	9,15	0,08	0,15
Valencia	54,79	19,55	4,70	4,41	16,33	0,06	0,16
Lodos	62,40	21,13	3,55	7,60	5,12	0,07	0,13

Tanto en la tabla 13 como en la figura 17, se puede observar que los perfiles siguen tendencias muy similares aunque varían en el orden de magnitud. Se pueden distinguir tres grupos: Zn y Cu, siempre muy por encima del resto, Ni, Cr y Pb, con valores intermedios, y Cd y Hg muy inferiores a todos los demás.

Sería interesante relacionar esta información con las posibles fuentes de metales en el compost para poder determinar la posibilidad de reducir los contenidos de metales en los materiales de entrada y por tanto en el compost obtenido.

Parámetros no contemplados en el RD 824/2005 separados por origen de los materiales de entrada

Además de los estrictamente exigidos y contemplados en RD 824/2005 existen otros parámetros que deberían ser tomados en cuenta desde un punto de vista agronómico:

Conductividad eléctrica Nitrógeno amoniacal (N-NH₄⁺) Materia orgánica resistente (%MOR) Grado de estabilidad (%GE) Nitrógeno no hidrolizable (%NnH) %NnH/Norg

Estos parámetros ya se han considerado anteriormente pero de forma global, sin embargo, este apartado pretende recoger los matices entre el conjunto de muestras y separadas por materias primas.

Las figuras siguientes muestran estos parámetros primero de manera global y después separado por materias primas y ordenados en orden creciente. La línea rosa señala la media para cada caso.

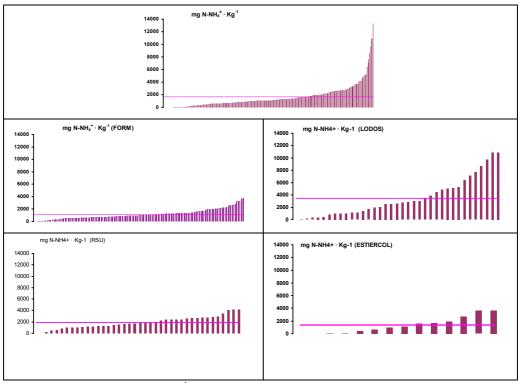


Figura 18. Resultados de nitrógeno amoniacal para las muestras de compost de los años 2002 a 2005 en conjunto y separadas por materias primas.

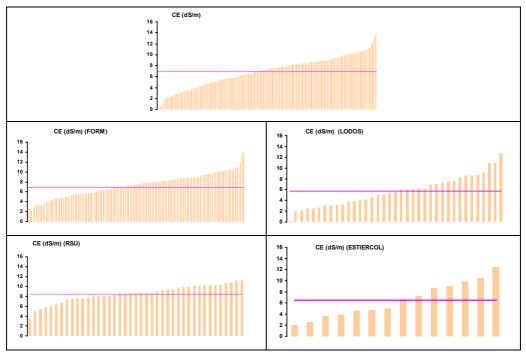


Figura 19. Resultados de conductividad eléctrica para las muestras de compost de los años 2002 a 2005 en conjunto y separadas por materias primas.

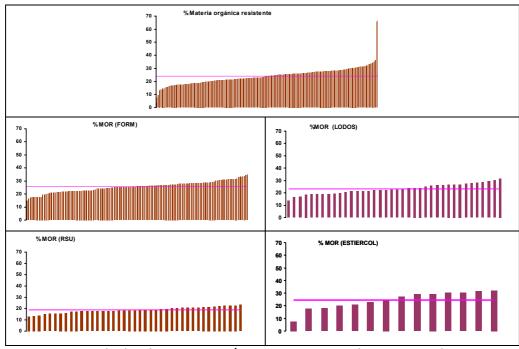


Figura 20. Resultados de materia orgánica resistente para las muestras de compost de los años 2002 a 2005 en conjunto y separadas por materias primas.

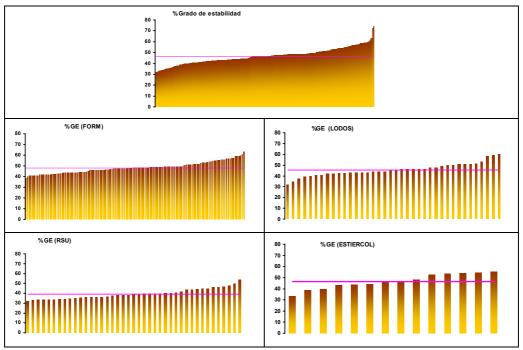


Figura 21. Resultados de grado de estabilidad para las muestras de compost de los años 2002 a 2005 en conjunto y separadas por materias primas.

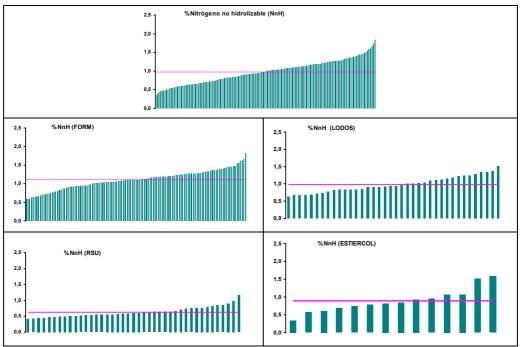


Figura 22. Resultados de nitrógeno no hidrolizable para las muestras de compost de los años 2002 a 2005 en conjunto y separadas por materias primas.

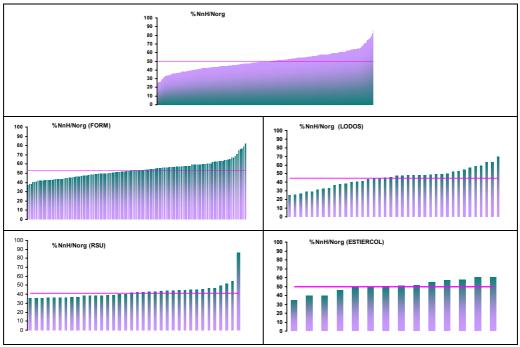


Figura 23. Resultados de la relación entre nitrógeno no hidrolizable y nitrógeno orgánico para las muestras de compost de los años 2002 a 2005 en conjunto y separadas por materias primas.

Según las materias primas utilizadas en la elaboración del compost, los resultados son diferentes. Así como anteriormente se ha comparado entre compost de FORM y de RSU, la figura 24 resume las anteriores gráficas, comparando las medias de cada grupo de composts para algunos parámetros. Así, los parámetros de estabilidad resultan inferiores en las muestras de compost de RSU, mientras que por ejemplo, los contenidos en nitrógeno amoniacal y orgánico y el fósforo son superiores en compost de lodos.

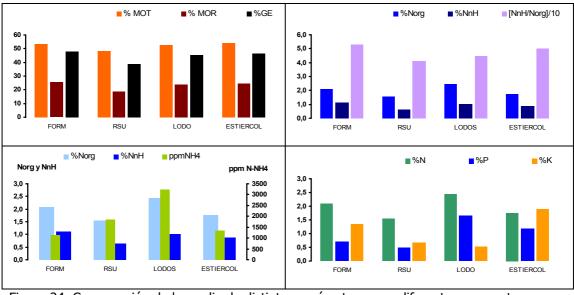


Figura 24. Comparación de la media de distintos parámetros para diferentes composts

Cumplimiento de RD824/2005

Del total de muestras analizadas el 71% incumple con la nueva legislación (figura 25) y esta misma proporción se mantiene con los compost elaborados a partir de otros materiales, si bien son los de RSU los que proporcionalmente la incumplen en mayor proporción (superior al 80%). No obstante, los motivos por los que estos materiales incumplen la nueva normativa son diferentes según la tipología del material de entrada.

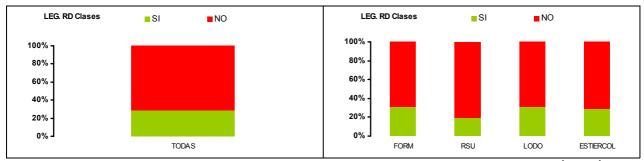


Figura 25. Cumplimiento legislativo de las nuevas muestras analizadas agrupadas por tipología según material de entrada. Aparentemente en todos los tipos de compost hay una proporción parecida de muestras no aceptables pero no por las mismas razones

La humedad es el parámetro más discordante con la nueva ley para todos los tipos de compost analizados (figura 26), sin embargo es fácil de corregir con un manejo correcto de proceso. Otros parámetros de incumplimiento pueden asociarse al tipo de material compostado, como las impurezas para los compost de RM, especialmente en RSU.

Los problemas de incumplimiento asociados a la humedad responden al proceso desarrollado en planta, mientras que los derivados de la presencia de impropios son imputables, fundamentalmente, a la calidad de los materiales de entrada. Los problemas derivados de una humedad incorrecta afectan al manejo y aplicación del producto, mientras que las impurezas comprometen la calidad final del proceso e influyen en la dispersión de contaminantes.

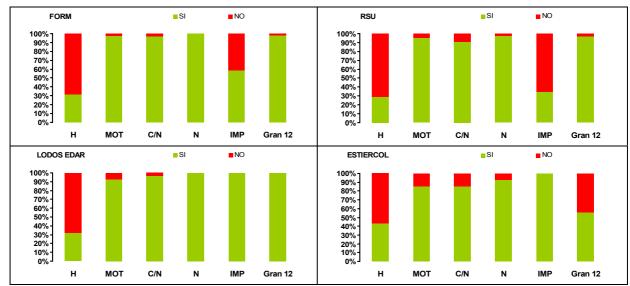


Figura 26. Cumplimiento legislativo de las nuevas muestras analizadas según parámetros analizados (H:humedad; MOT: materia orgánica; IMP: impurezas; Gran 12: tamaño partícula inferior a 12mm.).

Los procedimientos granulométricos seguidos en la ESAB no contemplaban el tamiz de 25mm propuesto por la legislación vigente; por ello, se ha estimado relacionarlo respecto el tamiz de 12mm, considerando así que si pasaba por éste también lo haría por el de 25mm. Sin embargo, hacer esta estimación resulta más restrictivo que utilizar la de 25mm.

Metales Pesados

Por el contenido en metales de las muestras analizadas y según establece la nueva normativa, el 64% del total de muestras analizadas corresponden a clase B, un 12% a clase C, un 15% deberían ir a vertedero y sólo un 9% son de clase A.

Considerando la procedencia de los materiales de partida, los compost de FORM son los que presentan un porcentaje más alto de clase B, mientras que RSU presenta el porcentaje más elevado de clase C y de muestras destinadas al vertido controlado. Las muestras de compost de estiércol son las que ofrecen mayor proporción de clase A.

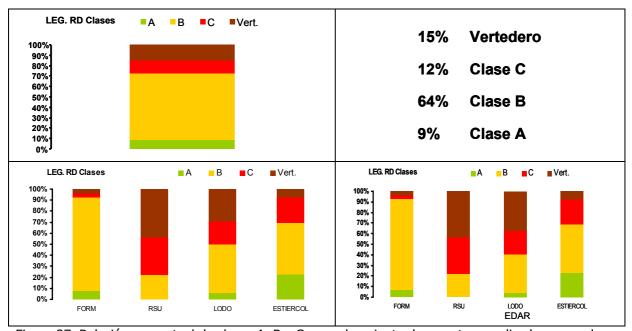


Figura 27. Relación porcentual de clases A, B y C para el conjunto de muestras analizadas y para las distintas clases de compost.

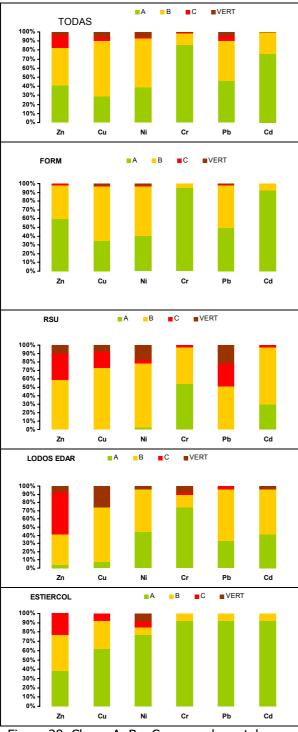


Figura 28. Clases A, B y C para cada metal y según los tipos de composts analizados.

De los metales analizados (figura 28), el zinc es el que determina composts de peor calidad, sobretodo para RSU, lodos y estiércol.

Los composts de FORM son los que tienen un conjunto de muestras de mejor calidad, ya que pocas de ellas son de clase C o vertedero.

Los compost de RSU presentan dificultades para la mayoría de los metales analizados, destacando Zn, Pb y Cu. También el Ni es responsable de que haya muchas muestras que deban ir a vertedero.

De las muestras de lodos de EDAR, para el caso del Zn, un 60% son pertenecen a clase C o vertedero, siendo este también el metal más restrictivo.

Para el caso del estiércol, dado el bajo número de muestras analizadas, los resultados obtenidos no se consideran suficientemente representativos, ya que muy pocas muestras de peor calidad pueden contribuir a elevar considerablemente el porcentaje de muestras de clase C o vertedero.

Índice de saturación

La relación entre la capacidad de diseño de una planta de compostaje y la cantidad de material que realmente esta tratando, nos permite obtener el índice de saturación (%IS). El IS informa si la planta está trabajando por debajo o por encima de sus posibilidades, además relacionándolo con otros parámetros analíticos, puede observarse las consecuencias de la saturación de las plantas desde el punto de vista de calidad de producto obtenido.

IS por debajo de 100% indican que la planta trabaja por debajo de su capacidad, mientras que por encima de esta cifra significa que la planta esta sobresaturada, dándose mayor grado de saturación cuanto más se sobrepase el 100%.

Índice de satruración, IS (%) =
$$\frac{\text{toneladas reales tratadas}}{\text{capacidad teórica instalación}} *100$$

Obtener estas cifras no siempre es fácil, y menos después de una única visita a planta, como ha sucedido con las plantas muestreadas con este proyecto (IGME). Por el contrario, las plantas muestreadas a través del proyecto SMADB con las que hay mayor complicidad por los años de trabajo en común, los datos recopilados ofrecen resultados más claros de las consecuencias de una sobresaturación.

Las gráficas de la figura 29 muestran la relación entre el IS y algunos parámetros analíticos de las plantas de RSU saturadas y muestreadas para este proyecto. Se observa una ligera tendencia según la cual las plantas más sobresaturadas presentan composts con más materia orgánica y menos estabilizada.

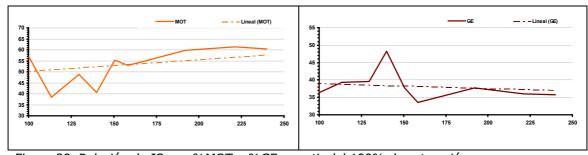


Figura 29. Relación de IS con %MOT y %GE a partir del 100% de saturación

Las gráficas de la figura 30 muestran la relación entre el IS y algunos parámetros analíticos de las plantas de FORM saturadas y muestreadas para el proyecto SMADB. Se han seleccionado para este caso las plantas con las que hay mayor complicidad a la hora de conocer los datos (tabla 14). Al igual que con las plantas de RSU, a mayor saturación, materia orgánica menos estabilizada, lo que significa procesos más incompletos. Otros parámetros refuerzan esta tesis, de forma que a mayor saturación el nitrógeno es más lábil. En resumen, en un estado de sobresaturación el gestor de planta no controla el proceso, sino que es el propio tránsito de material quien establece la dinámica del proceso, traduciéndose en periodos de residencia más cortos, con menos volteos y menos riegos.

Tabla 14. Saturación de plantas SMADB

	IS (%)
Montoliu	11
L'Espluga de Francolí	12
Sant Cugat	13
Sant Pere de Ribes	41
Castelldefels	58
Botarell	72
Terrassa	80
Torrelles	92
Manresa	120

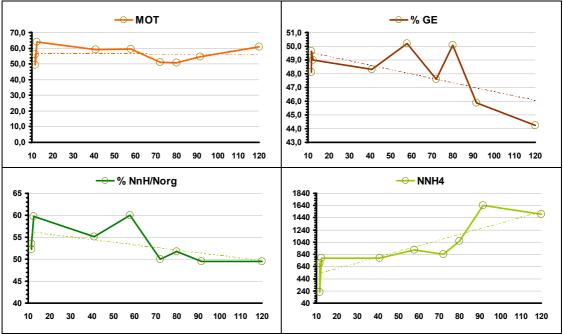


Figura 30. Relación entre IS y algunos parámetros analíticos

Resumen y consideraciones finales

Se han visitado 77 plantas y se han tomado y analizado unas 250 muestras entre los dos convenios.

Cataluña y Andalucía, seguidas de la Comunidad Valenciana, son las comunidades donse se han vistado más plantas.

Más del 50% de las plantas tratan residuos municipales. Más del 50% tienen una capacidad teorica de tratamiento superior a 20.000 ton/año y un 40% más de 50.000 ton/año.

Según información recogida un 21 % de las plantas visitadas tratan cantidades superiores a su capacidad teorica; no obstante en las visitas se percibió que eran muchas más las que presentaban aspecto de sobresaturación.

La poca eficiencia del proceso en muchas plantas y el elevado porcentaje de impropios en el caso de las plantas de residuos municipales provoca el desajuste entre capacidad y toneladas realmente tratadas.

Se han analizado 23 parámetros de cada muestra , 12 de los cuales corresponden a los contemplados en el RD 824/2005.

Para el cumplimiento de la legislación vigente es necesario controlar %H, %MOT, C/N, granulometría e impurezas y contenido en metales. Además se han considerado otros parámetros de interés agronómico, como pH, CE, contenido en macro y micro nutrientes y %MOR, %GE o formas de nitrógeno que además informan sobre el control del proceso.

El 67% de las muestras analizadas cumple las exigencias respecto al contenido en impurezas; en el caso de composts de lodos y de estiercol son todas las muestras las que lo cumplen; 34% las muestras de compost de RSU y 59% para el compost de FORM.

Se detecta una mayor proporción de fracción inferior a 2mm en las muestras con contenido inferior de impurezas. Dada la dificultad de los gestores de planta en controlar la calidad de los materiales de entrada, optan por reducir la presencia de impurezas con un afinado más exigente lo que genera elevadas cantidades de rechazo. Tan sólo un 33% de las muestras cumple con el nivel de humedad indicado por la legislación sin encontrar diferencias entre tipos de compost, excepto en el caso de compost de estiércol.

La mayoria de muestras (95%) presentan un contenido en materia orgánica superior al 35% que indica la legislación. También para la relación C/N la mayoria de muestras cumple con el valor indicado.

Considerando el contenido en metales pesados de todas las muestras analizadas un 64% se incluirian en la clase B y un 15% debería ir a vertedero; tan sólo un 9% entraría dentro de la clase A. Diferenciando por orígenes el compost de FORM presenta un 86 % de muestras de clase B y 7 % de clase A; sólo 4% deberian ir a vertedero. En cambio para el compost de RSU no habria muestras de clase A, 44% deberian ir a vertedero, 22% corresponderian a clase B y 34% a clase C. Para el compost de lodos de EDAR analizadas se reparten según 4% clase A, 37% clase B, 22% clase C y 37% vertedero.

Los metales que determinan que el compost sea de peor calidad o que incluso vayan a vertedero son Zn y Cu en RSU y lodos y Pb y Ni en compost de RSU.

El contenido en metales del compost de RSU/FORM separado por las tres comunidades más estudiadas es distinto, pero el orden de los contenidos (perfiles) es similar.

Para comparar la calidad de los compost de FORM con los de RSU se han utilizado parámetros analizados habitualmente en la ESAB. Se ha observado que los compost de FORM, tienen más materia orgánica y más estabilizada, así como más nitrógeno orgánico y más resistente, mientras que los compost de RSU tienen más nitrógeno amoniacal.

Las mejores cualidades del compost de FORM responden a unas mejores materias primas (por un menor contenido en impropios) y por mejor control del proceso debido a una menor saturación de las plantas.

Las visitas y contactos realizados durante los dos años de muestreos por las diversas comunidades han permitido conocer los distintos sistemas de compostaje, el tipo de materias primas tratadas, la situación de las instalaciones y también las dificultades y problemas de las plantas y de sus gestores. Conjuntamente, con la determinación de las características del compost producido ha facilitado tener una idea de la situación del compostaje en España.

El hecho de incluir visitas y análisis realizados en el marco de otros convenios ha permitido poder comparar las características del compost procedente de residuos municipales (con o sin recogida selectiva en origen). Quedan muy claras las diferencias en la calidad del compost según el tipo de recogida de que proceda; las diferencias se manifiestan tanto en el contenido y la calidad de la materia orgánica, en el contenido en fitonutrientes como en el contenido en contaminantes.

Aunque es más difícil de cuantificar, el tipo de recogida también manifiesta diferencias importantes en la dificultad de manejar los residuos a tratar y el proceso. En general se encuentran plantas de tratamiento colapsadas por no corresponderse la capacidad teórica con la real, pero se agrava el problema cuando el material que entra presenta contenidos elevados de impropios.

Las plantas que tratan lodos de depuradora o estiércoles no presentan problemas de impropios en los materiales de entrada y por tanto tampoco de impurezas en el compost pero sí en pérdidas de nutrientes por incorrecto manejo de las mezclas, o por

metales pesados en el caso de lodos procedentes del tratamiento de determinadas aguas residuales.

En muchas plantas de tratamiento se ha encontrado personas con un relativo interés por compostar los residuos que les llegaban pero con dificultades para hacerlo debido a las cantidades y tipo de materiales de entrada, a la falta de medios y también a la falta de información. No siempre los intereses de los responsables, los gestores y la administración son coincidentes.

El grado de actualización y modernidad de las instalaciones visitadas ha sido muy variable, de hecho, algunas de ellas están actualmente en reformas. En muchos casos se han detectado instalaciones obsoletas y con falta de importante mantenimiento que hace que la selección de materiales sea inadecuada y el proceso ineficiente. La mayoría de instalaciones no están cubiertas hecho que dificulta el control del proceso y la standardización del producto, a la vez que favorece la generación de lixiviados.

El hecho de que en la mayoría de comunidades tenga poca implantación la recogida selectiva de la fracción orgánica hace que no se crea necesario la incorporación de restos vegetales en la mezcla a compostar al considerarlos simplemente como agentes estructurantes. En el caso de una mayor implantación de la recogida selectiva de fracción orgánica de residuos municipales y del compostaje de lodos debería fomentarse la recogida y aprovechamiento de los restos de las podas de montes, de parques y jardines o restos de cosechas no aprovechados. Esto favorecería una mezcla inicial más equilibrada que mejoraría tanto el funcionamiento del proceso de compostaje como el aprovechamiento de los residuos orgánicos y de la materia orgánica y los nutrientes que contienen.

La comercialización y los beneficios por venta del producto, que suelen ser muy bajos, son muy variables entre plantas y no siempre dependen sólo de las características del compost. En general hay desconocimiento por parte de productores y posibles usuarios de como debería ser el compost. Normalmente, si las necesidades de materia orgánica en una zona son elevadas y hay poca oferta de otros materiales, las exigencias por parte de la demanda son bajas.

Anejo 1. Encuesta de planta

Empresa	Nombre de planta: Persona de cto Tlf:						Fech	Fecha encuesta:	
Poblaciones a las qu	ue da s	ervicio:							
Capacidad real de la	a planta	3	Cantida	ides tratad	as				
Restos vegetales (R	(V)	% IMP	RSU T/ % IMP			FORM	T/	% IMP	
LODOS EDAR		T/	LODO I	ND ALIME	NTARIA	T/	OTROS		т/
Tipo		.,	Tipo			.,	Tipo		.,_
Mezclas:									
Compost producido		Compo	st vendic	lo	Precio			Destino	
	Tipo			Por Tipo			Por Tipo		Por Tipo
Utilizáis RV ?		Tritura			Recircu			VOL me	zcla RV-FO
□Sí Objetivo	□No	Tamaño	□Sí)	□No	VOL inco	□Sí rporació	□No n	VOL mez	cla RC / RV
RV: Restes vegetals; RC:	Recircula	ido; FO: Fr	racció orgàn	nica					
Etapas	☐ Rec	epción	☐ Desc	omposiciór	1	☐ Ma	duración		☐ Almacenam.
Durada Tipo									
				AS □VL □ES	5 □СР	□IM	□AS □VL □	ES □CP	
Dimensiones(m)			ancho	altura	Long.	ancho	altura	Long.	
Frecuen. riego Tipo agua							'	<u>'</u>	
Frecuen. volt									
IM: Impulsión, AS: Aspira	ción, VL:	Volteo, ES	S: Estático y	CV: cambio	de posición				
Agua de proceso			Lixivia		- D-		:4-2 5	Pluviales	D/ ''
Tipo	Prod	ucción?	Sist. Re	ecol. Tip	oo Depos.	Sepa	ración? R	ecolección	Depósito
	□Sí			□No		□Sí		lSí □No	
	Hasta	cuando	se hacen s	servir?		Hasta	cuando se h	acen servir?	?
Γ				Tipo se	eparación				Ø
□ Inicio									
☐ Final Descmp.									
☐ Final Mad.									
☐ Afinado									

Anejo 2. Histórico de muestra

Nº mostra 05	Тіро	Fecha n	nuestreo:		
Empresa	Nombre de planta: Pe	rsona de cto	Tif:		
Mezclas material Temperaturas	Prop	: □Pes □Vol	Recepción Descomposici Maduración Almacenaje TOTAL	ón Afino Profundidad (cm 60 80	100
	∅ part.		<u> </u>		<u></u>
Alteraciones de pro	ceso:				

Final

Anejo 3. Estado de la planta

Nombre de la Planta			
Persona de Contacto			
Tif. Contacto			
E-mail			
Población			
Fecha visita			
T Carla Visita			
IMPRESIÓN INICIAL DE LA PLANTA			
	Alto	Medio	Bajo
Facilidad para establecer la fecha de visita	<u> </u>		<u> </u>
Control de entrada a planta			
Atención en la visita			
Guiada por:			П
□ Operario			H
 □ Encargado □ Responsable de gestión 			
Facilidad para mostrar la planta	П	П	П
Facilidad para escoger el material			
racilidad para escoger el material	"		
VALORACIÓN DEL ESTADO DE PLANTA			
VALURACIUN DEL ESTADO DE PLANTA	1	1	
	Alto	Medio	Bajo
Orden y limpieza de la Planta			Ш
Lixiviados			П
Nivel de las balsas (alto: muy llenas; bajo: vacías) Presencia en el suelo de la Planta			
Descomposición			Ιп
Maduración ☐ Ausente			
Final			
Obturación de las canaletas recolectoras			
Estado de la Maquinaria Funcionalidad en general			П
Funcionalidad en general Funcionalidad sondas			
Funcionan:			
No Funcionan:			
Funcionalidad túneles			
Funcionalidad otros			
Funcionan:			
No Funcionan:			
Presencia de polvo			
En general □ Ausente			
Descomposición □ Ausente			
Maduración ☐ Ausente		ΙÄ	l Н
Final □ Ausente	_		_
Humedad de las Pilas (Alto: Húmedas, Bajo: secas)			
Descomposición			
Maduración			
Final			
Olor			
General			
Descomposición			
Maduración			

Anejo 4. Resultados de muestras de compost por comunidades

Comunitat Valenciana

Pinta Val d'Alba Val d'Alba Quet de Polet Calles Guadassum Calles Calles Guadassum Calles Calle	Referencia	IE/03-001	IE/03-002	IE/03-003	IE/03-004	IE/03-006	IE/03-007	IE/03-008	IE/03-009	IE/03-010	IE/03-011
Fecha 2003 <	Planta	Vall d'Alba	Vall d'Alba	Quart de Poblet	Calles	Guadassuar	Ador	Villena	Crevillente	Crevillente	El Rebolledo
Fecha 2003 <	Material	Estiércol	Estiércol	RSU	LODOS	RSU	RSU	RSU	RSU	Algas	RSU
CE (ds m²) 12,39 9,06 10,85 5,56 10,08 7,25 7,88 9,81 3,44 9,86 Wh L 21,86 19,49 40,06 38,18 39,62 45,81 25,92 21,57 18,18 34,87 mgh-NH, kg² 1935 11,79 4164 5089 2401 1805 12,78 1592 25 2622 mgh-NH, kg² 1935 11,79 4164 5089 260 61,46 51,11 509 25,99 55,99 MOT 70,54 65,17 60,31 3,328 65,00 61,46 51,11 62,05 7,99 55,99 Norg 2,65 2,61 1,51 2,52 1,49 1,33 1,30 1,70 0,15 1,25 C/N 13 12 20 1,52 22 21 18 18 27 22 MOR 30,42 30,34 21,57 28,55 22,51 22,14 18,10 20,69<	Fecha	2003	2003	2003	2003	2003		2003	2003	2003	
CE (ds m²) 12,39 9,06 10,85 5,56 10,08 7,25 7,88 9,81 3,44 9,86 Wh L 21,86 19,49 40,06 38,18 39,62 45,81 25,92 21,57 18,18 34,87 mgh-NH, kg² 1935 11,79 4164 5089 2401 1805 12,78 1592 25 2622 mgh-NH, kg² 1935 11,79 4164 5089 260 61,46 51,11 509 25,99 55,99 MOT 70,54 65,17 60,31 3,328 65,00 61,46 51,11 62,05 7,99 55,99 Norg 2,65 2,61 1,51 2,52 1,49 1,33 1,30 1,70 0,15 1,25 C/N 13 12 20 1,52 22 21 18 18 27 22 MOR 30,42 30,34 21,57 28,55 22,51 22,14 18,10 20,69<	pH	7,28	8,04	7,35	8,31	6,35	6,27	6,70	7,13	7,43	7,44
% H 21,66 19,49 40,06 38,18 39,82 45,81 25,92 21,57 18,18 34,87 mg N-Ndy, kg¹ 18 10 13 10 15 10 19 163 12 % ems MOT 70,54 63,17 60,31 73,28 65,00 61,46 51,11 62,05 7,99 55,99 Norg 2,65 2,61 1,51 2,52 1,49 1,33 1,39 1,70 0,15 1,25 C/N 13 12 20 15 2,22 1,49 1,33 1,39 1,70 0,15 1,25 C/N 13 12 20 15 22 23 18 18 27 22 22 MOR 30,42 30,34 21,57 28,55 22,51 22,14 18,10 20,69 31,57 17,68 GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42<	CE (dS m ⁻¹)	12,39	9,06	10,85		10,08		7,88			9,86
mg N-NH ₂ kg² 195 1179 4164 5089 2401 1805 1278 1592 25 2622 Mors mg N-NGy x² x²<	% H	21,86	19,49	40,06		39,82	45,81			18,18	34,87
mg N-NO; kg¹ 18 10 13 10 15 10 19 163 12 %s sms MOT 70,54 63,17 60,31 73,28 65,00 61,46 51,11 62,05 7,99 55,99 Norg 2,65 2,61 1,51 2,52 1,49 1,33 1,39 1,70 0,15 1,25 C/N 13 12 20 15 22 23 18 18 27 22 MOR 30,42 30,34 21,57 28,56 22,1 23,1 18 18 27 22 MS MIN 1,52 1,39 0,53 0,87 34,63 36,02 35,42 33,34 40,78 31,57 MnH/Norg 57,23 60,66 0,54 32,59 35,80 42,62 32,89 38,06 39,08 38,73 % sms 1 1,39 2,04 0,45 0,99 0,34 0,38 0,35 <th>mg N-NH₄+ kg⁻¹</th> <th>1935</th> <th>1179</th> <th>4164</th> <th>5089</th> <th>2401</th> <th>1805</th> <th>1278</th> <th>1592</th> <th>25</th> <th>2622</th>	mg N-NH ₄ + kg ⁻¹	1935	1179	4164	5089	2401	1805	1278	1592	25	2622
MOT 70,54 63,17 60,31 73,28 65,00 61,46 51,11 62,05 7,99 55,99 Norg 2,65 2,61 1,51 2,52 1,49 1,33 1,39 1,70 0,15 1,25 C/N 13 12 20 15 22 23 18 18 27 22 22 MOR 30,42 30,34 21,57 28,56 22,51 22,14 18,10 20,69 3,66 17,68 GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42 33,34 40,78 31,57 NnH/Norg 57,23 60,65 35,44 32,59 35,50 42,62 32,89 38,06 30,88 38,73 % sems P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 <th></th> <th>18</th> <th>10</th> <th>13</th> <th>10</th> <th>15</th> <th></th> <th>10</th> <th>19</th> <th>163</th> <th></th>		18	10	13	10	15		10	19	163	
MOT 70,54 63,17 60,31 73,28 65,00 61,46 51,11 62,05 7,99 55,99 Norg 2,65 2,61 1,51 2,52 1,49 1,33 1,39 1,70 0,15 1,25 C/N 13 12 20 15 22 23 18 18 27 22 22 MOR 30,42 30,34 21,57 28,56 22,51 22,14 18,10 20,69 3,66 17,68 GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42 33,34 40,78 31,57 NnH/Norg 57,23 60,65 35,44 32,59 35,50 42,62 32,89 38,06 30,88 38,73 % sems P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 <th>% sms</th> <th></th>	% sms										
C/N 13 12 20 15 22 23 18 18 27 22 MOR 30,42 30,34 21,57 28,56 22,51 22,14 18,10 20,69 3,26 17,68 GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42 33,34 40,78 31,57 NnH 1,52 1,58 0,53 0,82 0,33 0,57 0,46 0,65 0,06 0,48 NnH/Norg 57,23 60,66 35,44 32,59 35,80 42,62 32,89 38,06 39,08 38,73 % sms P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,99 0,07 0,42 Mg 0,69 0,76 0,49 0,34 0,50 0,80 0,65		70,54	63,17	60,31	73,28	65,00	61,46	51,11	62,05	7,99	55,99
C/N 13 12 20 15 22 23 18 18 27 22 MOR 30,42 30,34 21,57 28,56 22,51 22,14 18,10 20,69 3,26 17,68 GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42 33,34 40,78 31,57 NnH 1,52 1,58 0,53 0,82 0,33 0,57 0,46 0,65 0,06 0,48 NnH/Norg 57,23 60,66 35,44 32,59 35,80 42,62 32,89 38,06 39,08 38,73 % sms P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,99 0,07 0,42 Mg 0,69 0,76 0,49 0,34 0,50 0,80 0,65	Norg	2,65	2,61	1,51	2,52		1,33	1,39	1,70	0,15	1,25
GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42 33,34 40,78 31,57 NnH 1,52 1,58 0,53 0,82 0,53 0,57 0,46 0,55 0,06 0,48 ***Sms** P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,59 0,07 0,42 Ce 5,87 11,01 9,56 5,72 8,05 9,91 11,94 13,84 25,23 9,67 Mg 0,69 0,76 0,49 0,34 0,50 0,80 0,65 0,52 0,73 0,53 Ma 0,49 0,57 0,69 0,12 0,65 0,48 0,65 0,52 0,73 0,53 Mg lsg* 1,30 0,35 0,85 1,43 0,91 0,4<	C/N				15	22		18		27	22
GE 43,13 48,02 35,76 38,97 34,63 36,02 35,42 33,34 40,78 31,57 NnH 1,52 1,58 0,53 0,82 0,53 0,57 0,46 0,55 0,06 0,48 ***Sms** P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,59 0,07 0,42 Ce 5,87 11,01 9,56 5,72 8,05 9,91 11,94 13,84 25,23 9,67 Mg 0,69 0,76 0,49 0,34 0,50 0,80 0,65 0,52 0,73 0,53 Ma 0,49 0,57 0,69 0,12 0,65 0,48 0,65 0,52 0,73 0,53 Mg lsg* 1,30 0,35 0,85 1,43 0,91 0,4<		30,42	30,34	21,57	28,56	22,51	22,14	18,10	20,69	3,26	17,68
NH 1,52 1,58 0,53 0,62 0,53 0,57 0,46 0,65 0,06 0,48 NnH/Norg 57,23 60,66 35,44 32,59 35,80 42,62 32,89 38,06 39,08 38,73 % sms P 1,39 2,04 0.45 0.99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,288 3,32 0,66 0,19 0,68 0,41 0,37 0,59 0,07 0,42 Ca 5,87 11,01 9,56 5,72 8,05 9,91 11,94 13,84 25,23 9,67 Mg 0,69 0,76 0,49 0,57 0,69 0,12 0,55 0,48 0,65 0,72 0,56 0,78 Na 0,49 0,57 0,69 0,12 0,55 0,48 0,65 0,78 0,36 0,78 Ms 2,10 0,55 0,88 1,49 0,96				35,76	38,97	34,63	36,02	35,42	33,34	40,78	31,57
NnH/Norg 57,23 60,66 35,44 32,59 35,80 42,62 32,89 38,06 39,08 38,73 % sms P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,38 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,59 0,07 0,42 Mg 0,69 0,76 0,49 0,34 0,50 0,80 0,65 0,52 0,73 0,53 0,53 0,78 0,33 0,78 0,53 0,53 0,55 0,48 0,65 0,52 0,73 0,53 0,53 0,53 0,55 0,48 0,65 0,52 0,73 0,53 0,55 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,78 0,36 0,7	NnH			0,53	0.82		0,57	0,46	0,65	0,06	0,48
96 sms P 1,39 2,04 0,45 0,99 0,34 0,38 0,35 0,98 0,03 0,33 K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,59 0,07 0,42 Ca 5,87 11,01 9,56 5,72 8,05 9,91 11,94 13,84 25,23 9,67 Mg 0,69 0,76 0,49 0,34 0,55 0,80 0,65 0,78 0,53 0,53 0,53 0,53 0,53 0,65 0,78 0,65 0,78 0,65 0,78 0,78 0,53 0,78	NnH/Norg							32,89			
P 1.39 2.04 0.45 0.99 0.34 0.38 0.35 0.38 0.03 0.33 K 2.88 3.32 0.66 0.19 0.68 0.41 0.37 0.59 0.67 0.62 Ca 5.87 11,01 9.56 5.72 8.05 9.91 11,94 13,84 25,23 9.67 Mg 0.69 0.76 0.49 0.34 0.50 0.80 0.65 0.52 0.73 0.53 Na 0.49 0.57 0.69 0.12 0.65 0.48 0.65 0.78 0.36 0.78 Fe 0.31 0.35 0.85 143 0.91 0.74 1.07 0.61 0.28 0.96 mg kg¹ sms		,			,		,	,		,	
K 2,88 3,32 0,66 0,19 0,68 0,41 0,37 0,59 0,07 0,42 Ca 5,87 11,01 9,56 5,72 8,05 9,91 11,94 13,84 25,23 9,67 Mg 0,69 0,75 0,69 0,12 0,65 0,48 0,65 0,78 0,36 0,78 Na 0,49 0,57 0,69 0,12 0,65 0,48 0,65 0,78 0,36 0,78 Fe 0,31 0,35 0,85 1,43 0,91 0,74 1,07 0,61 0,28 0,96 mg kg¹ sms Zn 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30		1,39	2,04	0,45	0,99	0,34	0,38	0,35	0,38	0,03	0,33
Ca 5,87 11,01 9,96 5,72 8,05 9,91 11,94 13,84 25,23 9,67 Mg 0,69 0,76 0,49 0,57 0,69 0,12 0,65 0,48 0,65 0,78 0,36 0,78 Re 0,31 0,35 0,85 1,43 0,91 0,74 1,07 0,61 0,28 0,96 mg kg¹ sms Zn 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 <th>K</th> <td></td> <td>3,32</td> <td></td> <td>0.19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	K		3,32		0.19						
Mg 0,69 0,76 0,49 0,34 0,50 0,80 0,65 0,52 0,73 0,53 Na 0,49 0,57 0,69 0,12 0,65 0,48 0,65 0,78 0,36 0,78 Fe 0,31 0,35 0,85 1,43 0,91 0,74 1,07 0,61 0,28 0,96 mg kg¹sms Z7 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 C 17 18 39 38 62 49 140 23 34 45 <th></th> <th></th> <th></th> <th></th> <th>5,72</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					5,72						
Na 0,49 0,57 0,69 0,12 0,65 0,48 0,65 0,78 0,36 0,78 Fe 0,31 0,35 0,85 1,43 0,91 0,74 1,07 0,61 0,28 0,96 mg kg¹ sms Zn 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 34 45 Pb 5 4 247 76 109 115 88 224 14 841								0.65			0.53
Fe 0,31 0,35 0,85 1,43 0,91 0,74 1,07 0,61 0,28 0,96 mg kg¹ sms Zn 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 34 45 Pb 5 4 247 76 109 115 88 224 14 841 Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38					0,12			0,65			0.78
Tan 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 34 45 Pb 5 4 247 76 109 115 88 224 14 841 Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh<											
Zn 255 279 855 572 484 573 458 1064 69 1178 Mn 339 309 136 117 127 320 141 129 98 296 Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 34 45 Pb 5 4 247 76 109 115 88 224 14 841 Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh			-,			-7			-/		
Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 34 45 Pb 5 4 247 76 109 115 88 224 14 841 Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh 2 2 mm 51,44 n.m. 51,26 74,87 33,46 54,65 25,92 51,05 n.m. 33,73 2-5 mm 25,43 n.m. 41,21 18,00 43,45 37,38 33,66 22,61		255	279	855	572	484	573	458	1064	69	1178
Cu 63 62 515 208 153 229 182 339 30 284 Ni 18 11 51 42 79 40 55 67 66 66 66 Cr 17 18 39 38 62 49 140 23 34 45 Pb 5 4 247 76 109 115 88 224 14 841 Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh 2 2 mm 51,44 n.m. 51,26 74,87 33,46 54,65 25,92 51,05 n.m. 33,73 2-5 mm 25,43 n.m. 41,21 18,00 43,45 37,38 33,66 22,61		339	309		117	127	320		129	98	296
Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh					208					30	
Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh		18		51	42	79		55	67	66	66
Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh		17	18	39	38	62	49	140	23	34	45
Cd 0,20 0,62 1,66 0,60 0,32 0,58 0,38 0,45 0,05 1,38 Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh	Pb	5	4	247	76	109	115	88	224	14	841
Hg 0,03 0,24 1,29 0,76 0,38 0,60 2,06 5,03 0,07 6,57 g smh	Cd	0.20			0.60			0.38	0.45		1.38
g smh < 2 mm											
< 2 mm			-7-	-/	57. 5	-7	-722		5/35	-7	•
2-5 mm 25,43 n.m. 41,21 18,00 43,45 37,38 33,66 22,61 n.m. 34,67 5-6,3 mm 4,21 n.m. 4,22 3,31 8,47 2,92 9,60 4,91 n.m. 7,34 6,3-12,5 mm 8,42 n.m. 2,98 3,83 13,41 5,04 21,70 15,43 n.m. 14,59 12,5-40 mm 10,50 n.m. 0,34 0,00 1,21 0,00 9,13 6,01 n.m. 9,67 > 40 mm 0,00 n.m. 0,00 0,00 0,00 0,00 0,00 0,00 n.m. 0,00 Impurezas % sms n.d. n.d. 1,42 n.d. 3,74 7,69 25,92 10,67 n.d. n.m.		51.44	n.m.	51.26	74.87	33.46	54.65	25.92	51.05	n.m.	33.73
5-6,3 mm 4,21 n.m. 4,22 3,31 8,47 2,92 9,60 4,91 n.m. 7,34 6,3-12,5 mm 8,42 n.m. 2,98 3,83 13,41 5,04 21,70 15,43 n.m. 14,59 12,5-40 mm 10,50 n.m. 0,34 0,00 1,21 0,00 9,13 6,01 n.m. 9,67 > 40 mm 0,00 n.m. 0,00 0,00 0,00 0,00 0,00 0,00 n.m. 0,00 Impurezas % sms n.d. n.d. 1,42 n.d. 3,74 7,69 25,92 10,67 n.d. n.m.											34,67
6,3-12,5 mm 8,42 n.m. 2,98 3,83 13,41 5,04 21,70 15,43 n.m. 14,59 12,5-40 mm 10,50 n.m. 0,34 0,00 1,21 0,00 9,13 6,01 n.m. 9,67 > 40 mm 0,00 n.m. 0,00 0,00 0,00 0,00 0,00 0,00 n.m. 0,00 Impurezas % sms n.d. n.d. 1,42 n.d. 3,74 7,69 25,92 10,67 n.d. n.m.				4.22	3.31		2.92	9.60			7.34
12,5-40 mm 10,50 n.m. 0,34 0,00 1,21 0,00 9,13 6,01 n.m. 9,67 > 40 mm 0,00 n.m. 0,00 0,00 0,00 0,00 0,00 0,00 0,00 n.m. 0,00 Impurezas % sms n.d. n.d. 1,42 n.d. 3,74 7,69 25,92 10,67 n.d. n.m.				2,98	3,83			21,70	15,43	n.m.	14,59
> 40 mm 0,00 n.m. 0,00 0,00 0,00 0,00 0,00 0,00 0,00 n.m. 0,00 Impurezas % sms n.d. n.d. 1,42 n.d. 3,74 7,69 25,92 10,67 n.d. n.m.								9.13		n.m.	9.67
Impurezas % sms n.d. n.d. 1,42 n.d. 3,74 7,69 25,92 10,67 n.d. n.m.											
	TA	1	n.m.	1	4	1	7,03	1	1	n.m.	1

Castilla-León

Referencia	IE/04-002	IE/04-003	IE/04-004	IE/04-005	IE/04-006	IE/05-024	IE/05-025	IE/05-026
Planta	Golmayo	Burgos	Zamora	Toledo	Burgos	Valladolid	Urraca Miguel	Los Huertos
Material	RSU	RSU	RSU	RSU	LODOS	RSU	RSU	RSU
Fecha	2004	2004	2004	2004	2004	2005	2005	2005
pH	8,56	7,69	8,17	7,20	6,95	8,46	6 , 95	7,68
CE (dS m ⁻¹)	8,18	10,03	8,97	6,57	3,82	8,08	8,37	10,21
% H	18,37	27,05	28,98	16,86	35,86	21,42	48,44	19,84
mg N-NH ₄ + kg ⁻¹	963	2701	2458	530	13	4209	16	2693
mg N-NO ₃ kg ⁻¹	33	15	11	6	6253	8	4254	19
o sms					0200		.25 .	
MOT	43,87	56,51	45,08	57,08	27,21	35,83	42,30	38,34
Norg	1,67	1,57	1,61	1,47	1,76	1,33	1,40	1,17
C/N	13,13	18	14	19	8	13	15	16
MOR	19,45	18,73	17,80	20,75	13,76	15,62	17,53	15,08
GE	44,33	33,15	39,48	36,34	50,57	43,59	41,45	39,34
NnH	0,67	0,57	0,64	0,65	0,72	0,48	0,63	0,49
NnH/Norg	39,84	36,13	39,83	44,15	41,03	36,32	45,10	
	39,04	30,13	39,03	44,13	41,03	30,32	43,10	41,41
o sms		0,42	0,49	0.26	216		0,78	0.42
P	0,65			0,36	2,16	0,96		0,42
K	0,87	0,63	0,79	0,79	0,35	0,77	0,80	0,84
Ca	11,74	6,46	5,63	4,46	18,15	5,98	7,20	5,76
Mg	0,43	0,35	0,38	0,53	0,61	0,93	0,82	0,61
Na Na	0,77	0,61	0,69	0,77	0,12	0,65	0,45	0,60
Fe	2,01	1,50	1,07	0,73	1,62	1,32	2,39	0,75
ig kg ⁻¹ sms								
Zn	960	628	370	314	954	606	447	356
Mn	370	192	229	142	534	220	518	251
Cu	315	245	209	368	232	245	151	124
Ni	138	70	110	107	47	50 30	30 23	18 15
Cr	124	59	106	142	816	30	23	15
Pb	155	151	114	87	165	168	92	152
Cd	1,07	0,93	0,83	0,70	3,18	2,00	0,77	0,63
Hg	0,62	1,07	0,54	2,69	2,64	n.m.	n.m.	n.m.
smh	•	•	•	•	•			
< 2 mm	61,59	53,13	51,37	42,12	49,54	52,48	70,51	65,68
2-5 mm	21,66	27,68	30,44	32,68	30,88	32,52	24,84	31,22
5-6,3 mm	4,70	5,20	6,76	6,06	6,44	6,03	2,96	1,88
6,3-12,5 mm	7,80	10,26	10,48	14,20	5,90	8,04	1,69	1,23
12,5-40 mm	4,25	3,73	0,94	4,93	7,24	0,93	0,00	0,00
> 40 mm	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
mpurezas % sms	8,72	5,93	4,52	5,93	0,00	9,34	0,66	2,66
TA	4	3,93 1	2	2	5	9,3 4	5	2,00

Castilla La Mancha

Referencia	IE/04-007	IE/04-008	IE/04-009	IE/04-010
Planta	Alcázar de San Juan	Almagro	Albacete	Hellín
Material	RSU	RSU	RSU	RSU
Fecha	2004	2004	2004	2004
pH	8,04	8,21	7,92	7,95
CE (dS m ⁻¹)	10,21	5,70	11,20	9,21
% H	33,35	37,85	14,10	12,36
mg N-NH ₄ + kg ⁻¹	2733	1008	823	1026
mg N-NO ₃ kg ⁻¹	20	30	17	29
% sms				
MOT	50,66	33,12	55,27	44,00
Norg	1,40	1,53	2.09	1,67
C/N	18	11	13,19	13
MOR	20,24	15,49	20,84	17,52
GE	39,95	46,76	37,71	39,83
NnH	0,54	0,65	0,74	0,59
NnH/Norg	38,75	42,66	35,26	35,71
% sms	30,7.5	.2/00	33/23	357. 1
-: <u>-:-:</u> P	0,44	0,54	0,54	0,42
K	1,03	0,79	0,87	0,79
Ca	9,06	8,99	8,00	7,00
Mg	0,57	0,65	0,60	1,40
Na	1,01	0,77	0,93	0,85
Fe	0,94	1,75	1,40	1,43
mg kg ⁻¹ sms	0/51	1,75	1,10	1,13
Zn	282	412	850	1024
Mn_	185	269	196	152
Cu	164	238	·-·	163
Ni	132	238 123	329 65	83
Cr	80	97	90	164
Pb	94	142	212	178
Cd	0,68	1,02	1,33	1,97
Hg	0,26	1,15	1,28	0,60
g smh	0,20	1,13	1,20	0,00
< 2 mm	41,05	32,13	94,56	49,34
2-5 mm	37,74	34,47	4,56	25,78
5-6,3 mm	7,15	7,98	0,46	7,76
6,3-12,5 mm	12,32	18,25	0,36	16,95
12,5-40 mm	1,74	7,17	0,06	0,18
> 40 mm	0,00	0,00	0,00	0,00
Impurezas % sms	5,00	4,42	0,00	11,50
	5,00 1	<u>4,42</u> 4		
TA	1	4	2	3

Aragón

Referencia	IE/04-026	IE/04-027
Planta	Almudevar	Almudevar
Material	Estiércol	Estiércol
Fecha	2004	2004
pH	8,95	6,78
CE (dS m ⁻¹)	7,21	3,57
% H	40,75	30,37
mg N-NH ₄ + kg ⁻¹		15
mg N-NO ₃ kg ⁻¹	1710 51	2643
	31	2043
% sms MOT	46.26	17.25
	46,36	17,35
Norg	1, <u>34</u> 17	<u>0,88</u>
C/N		
MOR	17,84	7,56
GE	38,48	43,59
NnH	0,69	0,35
NnH/Norg _	51,05	39,45
% sms		
P	1,14	1,30
K	2,72 8,36	0,70
Ca	8,36	10,33
Mg	0,84	0,81
Na Na	0,56	0,17
Fe	0,98	1,41
mg kg ⁻¹ sms		
Zn	303	661
Mn	458	516
Cu	50	295
Ni	11	15
Cr	11	16
Pb	8	10
Cd	0,22	0,22
Hg	0,05	0,03
g smh		
< 2 mm	31,98	40,31
2-5 mm	25,75	27,38
5-6,3 mm	8,41	6,83
6,3-12,5 mm	20,78	13,98
12,5-40 mm	13,09	11,50
> 40 mm	0,00	0,00
Impurezas % sms	n.d.	n.d.
TA	4	2
-		

Andalucía (1)

Planta Alcal Material Fecha pH CE (dS m ⁻¹) % H mg N-NH ₄ + kg ⁻¹ mg N-NO ₃ kg ⁻¹ % sms MOT Norg C/N MOR GE NnH	á de Guadaira RSU 2004 8,00 5,47 22,34	Alcalá de Guadaira RSU 2004 7,28	Utrera RSU 2004	Marchena RSU 2004	Alcalá del Río RSU 2004	Montalbán RSU	Córdoba FORM	Córdoba LODOS
Fecha pH CE (dS m ⁻¹) % H mg N-NH₄+ kg ⁻¹ mg N-NO₃ kg ⁻¹ % sms MOT Norg C/N MOR GE NnH	2004 8,00 5,47	2004	2004					
pH CE (dS m ⁻¹) % H mg N-NH ₄ + kg ⁻¹ mg N-NO ₃ - kg ⁻¹ % sms MOT Norg C/N MOR GE NnH	8, <u>00</u> 5,47			2004	2004	2004		
CE (dS m ⁻¹) % H mg N-NH ₄ + kg ⁻¹ mg N-NO ₃ kg ⁻¹ % sms MOT Norg C/N MOR GE NnH	5,47	7,28			2007	2004	2004	2004
% H mg N-NH ₄ + kg ⁻¹ mg N-NO ₃ kg ⁻¹ % sms MOT Norg C/N MOR GE NnH			7,10	7,38	7,91	7,87	7,83	7,32
mg N-NH ₄ + kg ⁻¹ mg N-NO ₃ - kg ⁻¹ % sms MOT Norg C/N MOR GE NnH	22 34	6,20	7,57	9,29	6,32	7,59	8,66	3,80
mg N-NO3 kg 1 % sms MOT Norg C/N MOR GE NnH	,- '	26,77	28,93	34,67	33,70	35,55	26,44	52,30
% sms MOT Norg C/N MOR GE NnH	1944	2236	2704	4113	1497	3005	1254	1691
MOT Norg C/N MOR GE NnH	14	15	8	3	8	20	28	3515
Norg C/N MOR GE NnH								
C/N MOR GE NnH	32,60	35,20	45,49	52,40	37,82	45,12	49,57	54,92
MOR GE NnH	1,18	0,97	1,36	1,26	1,55	1,70	2,38	1,89
MOR GE NnH	14	18	17	21	12 18,56	13	10	15
NnH	12,97	13,66	16,18	17,15	18,56	19,79	20,59	22,28
	39,78	38,81	35,58	32,72	49,07	43,86	41,54	40,56
NnH/Norg	0,55	0,40	0,45	0,43	0,84	0,76	1,16	0,90
	46,40	41,82	33,27	34,00	54,19	44,47	48,78	47,72
% sms		•	•		•		•	
P	0,39	0,38	0,43	0,38	0,48	0,45	0,92	1,56
K	0,31	0,27	0,35	0,43	0,59	0,67	0,95	0,51
Ca	10,29	10,34	8,59	9,00	12,58	11,76	9,65	5,15
Mg	0,61	0,63	0,52	0,48	0,58	0,61	0,74	0,48
Na	0,61	0,46	0,69	0,77	0,69	0,77	1,17	0,11
Fe	1,48	1,75	0,97	0,76	1,31	1,31	1,58	1,65
mg kg ⁻¹ sms					•			
Zn	472	423	274	264	396	545	914	558
Mn	190	204	146	145	295	209	220	331
Cu	330	301	179	182	237	462	513	111
Ni	88	106	37	33	46	57	47	16
Cr	220	270	81	71	67	100	66	31
Pb	265	190	182	95	150	182	182	128
Cd	1,48	1,82	2,11	0,75	0,98	1,25	1,38	1,60
Hg	n.m.	1,04	1,88	0,53	1,16	0,62	2,66	1,32
g smh			· ·	· ·	•		•	
< 2 mm	33,11	30,39	46,94	43,89	71,82	52,97	75,26	44,98
2-5 mm	24,36	40,22	40,19	47,37	18,63	32,98	19,17	39,75
5-6,3 mm	9,28	11,15	7,76	5,55	2,78	5,12	2,74	6,25
6,3-12,5 mm	26,77	17,51	5,11	3,19	6,21	7,50	2,83	8,93
12,5-40 mm	6,48	0,72	0,00	0,00	0,56	1,43	0,00	0,09
> 40 mm	U, 1 0	∨,, <u>~</u>						
Impurezas % sms	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TA				. — . — . — . — . — . — .		0,00 6,46	0,00 2,72	0,00 n.d.

Andalucía (2)

Referencia	IE/04-019	IE/04-020	IE/04-021	IE/04-022	IE/04-023	IE/04-024	IE/04-025
Planta	Villarasa	Los Barrios	Albox	Mijas	Casares	Alhendín	Vélez Benaudalla
Material	RSU	RSU	RSU	RSU	RSU	RSU	RSU
Fecha	2004	2004	2004	2004	2004	2004	2004
рН	7,60	7,43	6,97	7,82	6,35	6,75	7,11
CE (dS m ⁻¹)	3,42	8,64	10,28	7,99	8,68	10,65	9,80
% H	34,21	36,20	11,57	31,44	40,31	24,70	14,81
mg N-NH4+ kg-1	1248	2849	1056	1993	3425	1703	1314
mg N-NO₃ kg-1	12	12	4	14	2	18	41
% sms							
MOT	35,75	52,86	48,70	48,88	53,35	52,37	62,86
Norg	1,15	1,48	1,83	1,60	1,44	1,59	2,01
C/Ñ	16	18	13	15	18	16	16
MOR	19,12	17,74	21,52	19,32	20,54	17,66	23,36
GE	53,50	33,57	44,19	39,52	38,50	33,72	37,16
NnH	0,49	0,51	0,85	0,72	0,52	0,61	0,77
NnH/Norg	42,89	34,10	46,28	44,73	35,69	38,19	38,22
% sms	.=/**	,	,	,	22/22		
Р	0,52	0,34	0,43	0,35	0,38	0,42	0,44
	0,31	0,43	0,71	0,63	0,47	0,83	0,87
Ca	7,63	5,59	9,19	8,49	7,60	12,20	6,56
Mg	0,39	0,56	0,72	1,68	1,65	1,25	0,76
Na	0,46	0,60	0,87	0,87	0,71	0,79	0,96
Fe	2,35	1,24	2,75	1,25	1,07	1,87	1,03
mg kg ⁻¹ sms	2,00	-/- :		1/25	2/0/	2,0,	1,00
Zn	772	585	484	321	357	577	287
	267	176	247	215	162	200	142
Cu	84	220	246	168	124	236	127
Ni	58	46	56	79	53	35	33
Cr	97	67	69	103	59	36	45
Pb	212	232	166	112	144	141	62
Cd	1,43	1,20	0,98	1,22	1,00	1,15	1,02
Hg	n.m.	0,52	0,59	0,46	0,41	0,81	1,28
g smh		-7		-,	-,	-7	-/
< 2 mm	8,53	45,59	63,30	55,94	48,68	48,64	60,33
2-5 mm	41,37	45,49	18,80	33,28	37,86	33,66	26,32
5-6,3 mm	10,77	5,47	4,98	4,78	6,44	5,94	5,11
6,3-12,5 mm	39,33	3,45	12,91	6,01	6,39	11,76	8,05
12,5-40 mm	0,00	0,00	0,00	0,00	0,62	0.00	0,19
> 40 mm	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Impurezas % sms	21,10	4,85	9,74	1,14	2,38	0,82	1,25
TA	3	1	2	2	2,38	1	1,23
IA	J	1			1	1	

Catalunya (1)

Referencia	IE/04-028	IE/04-029	IE/04-030	IE/04-031	IE/04-032	IE/04-033	IE/04-034	IE/04-035
Planta	Sots	Sots	Fervosa	Fervosa	Llinars del Vallès	St. Martí d'Albars	Manresa EDAR	Manresa EDAR
Material	MIXTO	Estiércol	LODOS	Estiércol	Estiércol	LODOS	LODOS	Pellet de lodo
Fecha	2004	2004	2004	2004	2004	2004	2004	2004
рН	7,84	8,19	8,08	8,71	8,84	8,09	7,59	6,86
CE (dS m ⁻¹)	5,09	9,86	8,61	10,43	6,70	7,22	3,13	0,16
% H	39,45	33,49	35,08	35,89	65,25	30,58	37,37	8,69
mg N-NH ₄ + kg ⁻¹	440	3661	5246	1632	3630	3475	2518	439
mg N-NO₃ kg-1	129	9	3	30	308	4	9	n.m.
% sms								
МОТ	40,96	45,64	36,82	59,21	81,54	45,82	42,47	n.m.
Norg	1,35	1,67	1,37	1,87	2,40	1,34	1,95	n.m.
C/N	15	14	13	16	17	17	11	n.m.
MOR	23,92	24,53	19,50	27,29	32,12	22,21	21,25	n.m.
GE	58,41	53,74	52,95	46,09	39,39	48,48	50,03	n.m.
NnH	0,67	0,82	0,67	1,07	0,95	0,63	0,78	n.m.
NnH/Norg	50,17	49,27	48,54	57,44	39,33	47,08	39,82	n.m.
% sms			-,-			,		
Р	0,76	1,75	0,84	0,91	1,02	0,83	1,47	n.m.
K	0,70	1,79	0,54	2,72	2,33	0,47	0,23	n.m.
Ca	6,50	4,44	5,22	2,35	0,94	3,23	7,51	n.m.
Mg	1,50	1,95	0,63	0,70	0,57	0,46	0,75	n.m.
Na	0,53	0,92	0,27	0,61	0,84	0,69	0,14	n.m.
Fe	1,06	1,49	1,71	0,55	0,17	2,02	2,12	n.m.
mg kg ⁻¹ sms	2,00	-/ .5	-/	0,00	0/2/	2/02	_/	
Zn	396	605	266	299	135	1836	1642	n.m.
Mn	297	343	213	229	142	216	271	n.m.
Cu	175	339	129	71	25	127	158	n.m.
Ni	51	287	80	71 57	24	120	203	n.m.
Cr	16	22	16	17		47	262	n.m.
Pb	19	13	15	11	88 76	47 37	60	n.m.
Cd	0,20	0,20	0,20	0,20	0,28	1,40	1,42	n.m.
Hg	0.85	0,16	0,14	0,07	0,02	0,37	2,43	1,10
g smh	0,03	0,10	0,11	0,07	0,02	0,57	2,13	1,10
< 2 mm	57,17	72,29	63,54	79,47	30,04	63,55	51,08	48,71
2-5 mm	28,25	17,69	27,81	17,25	53,11	24,11	32,48	44,48
5-6,3 mm	8,42	4,04	4,02	2,35	6,18	4,80	8,21	4,47
6,3-12,5 mm	6,17	5,50	4,63	0,93	10,67	6,53	8,24	2,34
12,5-40 mm	0,00	0,47	0,00	0,93	0,00	1,01	0,00	0,00
> 40 mm	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Impurezas % sms	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		n.d.
	11.a. 5	2	2	4		11.u.	n.d. 5	
TA	<u> </u>			4	5	1		n.m.

Catalunya (2)

Referencia	IE/04-037	IE/05-001	IE/05-002	IE/05-003	IE/05-004	IE/05-005	IE/05-009	IE/05-010
Planta	Blanes	Castelló Empúries	Vilablareix	Agroviver	Agroviver	Agroviver	Blanes	Blanes
Material	LODOS	LODOS	LODOS	LODOS	Estiércol	Estiércol	LODOS	LODOS
Fecha	2004	2005	2005	2005	2005	2005	2005	2005
pН	7,21	8,31	7,36	7,66	7,26	7,46	7,10	7,56
CE (dS m ⁻¹)	6,22	3,04	3,04	2,07	2,59	4,67	5,08	8,20
% Н	26,90	31,54	28,84	42,30	32,03	25,54	28,14	24,66
mg N-NH ₄ + kg ⁻¹	4830	1002	1012	109	430	32	5104	8646
mg N-NO ₃ - kg-1	n.d.	11	47	n.m.	189	1566	n.d.	6
% sms								
МОТ	59,41	31,63	43,90	52,06	54,64	42,02	56,50	48,24
Norg	3,22	1,42	1,73	1,46	1,78	1,91	3,11	3,68
C/N	9	11	13	18	15	11	9	7
MOR	18,82	18,92	22,20	26,03	29,19	22,79	20,94	16,65
GE	31,68	59,81	50,56	50,00	53,43	54,23	37,07	34,51
NnH	0,83	0,90	0,83	0,92	1,08	0,93	0,83	0,93
NnH/Norg	25,86	63,52	47,95	62,74	60,49	48,74	26,61	25,17
% sms		**/*-	/				/	
Р	2,67	0,35	0,91	0,35	1,04	1,47	2,95	3,53
	0,19	0,82	0,51	0,94	0,86	1,72	0,27	0,23
Ca	3,81	5,63	17,06	4,70	5,62	5,73	4,34	3,43
	0,42	0,40	0,28	0,66	0,69	1,36	0,53	0,49
Na	0,19	0,14	0,23	0,19	0,23	0,46	0,23	0,27
Fe	5,67	1,42	0,64	1,06	1,56	0,87	5,04	6,73
ng kg ⁻¹ sms	3,07	1,12	0,01	1,00	1,50	0,01	3,01	0,73
Zn	998	153	234	154	795	493	777	1043
	414	218	150	241	233	411	409	603
Cu	443	67	72	30	120	70	426	561
Ni	50	12	<u>/</u> 12	<u></u>	24	1 <u>0</u>		45
Cr	105		1 <u>2</u> 36	11 43	139	14 13	33 67	84
Pb	79	9 32	14	16	41	10	57	67
Cd	1,35	0,22	1	0,14	0,84	0,24	1,18	1,48
Hg	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.
j smh	11.111.	11.111.	11.111.	11.111.	11.111.	11.111.	11.111.	11.111.
< 2 mm	n.m.	67,67	66,48	65,35	62,19	70,51	47,52	75 97
2-5 mm								75,87
	<u>n.m.</u>	21,78	20,64	20,51	26,89	20,66	49,17	22,44 1,29
5-6,3 mm	<u>n.m.</u>	4,25	<u>2,96</u>	4,69	6,23	5,05	3,00	0,40
6,3-12,5 mm	<u>n.m.</u>	6,06	0,99	7,76	4,68	3,78	0,31	
12,5-40 mm	n.m.	0,24		1,70	0,00	0,00	0,00	0,00
> 40 mm	n.m.	0,00	7,81	0,00	0,00	0,00	0,00	0,00
Impurezas % sms	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
TA	n.m.	4	4	5	5	5	3	5

Catalunya (3)

Referencia	IE/05-011	IE/05-012	IE/05-013	IE/05-014	IE/05-015	IE/05-016	IE/05-017
Planta	Segrià	Segrià	Segrià	Inferín	Feresp	Sant Cugat	Banyeres
Material	LODOS	LODOS	LODOS	MIXTO	LODOS	FORM	Estiércol
Fecha	2005	2005	2005	2005	2005	2005	2005
рН	7,88	6,88	6,97	7,16	7,02	7,28	8,90
CE (dS m ⁻¹)	9,12	10,89	12,78	13,42	5,93	4,75	3,92
% H	33,79	32,06	27,21	30,07	19,80	29,56	70,71
mg N-NH₄+ kg-1	2766	10929	10923	13291	2562	122	2741
mg N-NO ₃ kg ⁻¹	113	8	8	n.m.	11	208	13
6 sms			-				
MOT	50,16	44,27	41,61	74,46	47,87	71,57	88,50
Norg	2,50	2,47	2,43	8,48	2,03	2,12	1,65
C/N	10	9	9	4	12	17	27
MOR	21,46	18,60	16,95	16,21	20,31	17 33,80	29,41
GE	42,78	42,02	40,74	21,77	42,43	47,23	33,22
NnH	1,21	0,71	0,70	1,09	0,90	1,19	0,57
NnH/Norg	48,48	28,92	28,70	12,83	44,28	56,20	34,59
% sms	טד,טד	20,32	20,70	12,03	77,20	30,20	37,33
0 51115 P	1,38	0,93	0,87	1,60	1,46	0,50	0,29
<u>K</u>	2,72	1,01	1,17	1,48	0,70	1,17	1,32
Ca	8,69	16,30	17,00	3,61	12,20	4,07	1,71
Mg	0,73	0,49	0,56	0,43	0,51	0,35	0,32
Na	0,88	0,53	0,53	0,91	0,53	0,53	0,76
Fe_	1,19	0,96	0,92	0,49	2,40	0,61	0,14
ng kg ⁻¹ sms							
Zn	498	475	469	337	454	130	101
Mn Mn	243	126	274	711	236	127	93
Cu	119	115	116	59	142	42	29
Ni Ni	18	12 17	13	77 7	32 43	9 10	3
Cr	26	17	15				<u> </u>
Pb	13	13	13	16	50	22	7
Cd	0,26	0,17	0,36	0,36	0,67	0,26	0,17
Hg	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.
smh							
< 2 mm	48,90	42,53	52,49	62,40	72,95	63,25	n.m.
2-5 mm	20,76	27,96	26,96	22,18	26,99	26,28	n.m.
5-6,3 mm	4,65	5,12	4,73	6,16	0,03	5,34	n.m.
6,3-12,5 mm	13,09	12,62	8,23	9,26	0,04	5,11	n.m.
12,5-40 mm	12,59	11,77	7,59	0,00	0,00	0,02	n.m.
> 40 mm	0,00	0,00	0,00	0,00	0,00	0,00	n.m.
Impurezas % sms	n.d.	n.d.	n.d.	n.d.	n.d.	1,96	n.d.
TA	3	2	1	5	2	5	n.m.

Comunidad Foral de Navarra

Referencia	IE/05-018	IE/05-019
Planta	Arazuri	Montejurra
Material	LODOS	FORM
Fecha	2005	2005
CE (dS m ⁻¹)	6,92	7,94
CE (dS m ⁻¹)	2,38	6,26
% П	46,63	12,17
mg N-NH ₄ + kg ⁻¹	960	720
mg N-NO ₃ kg ⁻¹	669	7
% sms		
MOT	55,11	45,89
Norg	2,31	1,50
C/N	12	15
MOR	27,83	17,04
GE	50,50	37,13
NnH	1 , 34	0,68
NnH/Norg	58,17	45,15
% sms		
Р	2,10	0,69
K	0,70	1,09
Ca	6,47	12,06
Mg	0,52	0,62
NaNa	0,12	0,53
Fe	0,81	0,91
mg kg ⁻¹ sms		
Zn	819	439
Mn	183	239
Cu	162	146
Ni	34	20
Cr	82	37
Pb	56	55
Cd	0 , 71	0,46
Hg	n.m.	n.m.
g smh		
< 2 mm	44,45	46,62
2-5 mm	37,70	31,08
5-6,3 mm	7,08	7,44
6,3-12,5 mm	5,60	14,33
12,5-40 mm	5 , 17	0,53
> 40 mm	0,00	0,00
Impurezas % sms	n.d.	14,32
TA	5	1

La Rioja

Referencia	IE/05-020	IE/05-021	IE/05-022	IE/05-023
Planta	Agua y jardín	Alcoholera	Alcoholera	BioRiojano
Material	RV	RV	RV	Estiércol
Fecha	2005	2005	2005	2005
pH	7,92	8,06	7,79	7,83
CE (dS m ⁻¹)	3,21	0,54	0,40	4,58
% H	28,65	51,68	56,52	51,67
mg N-NH ₄ + kg ⁻¹	11	359	278	938
mg N-NO ₃ kg ⁻¹	761	0	52	26
% sms				
MOT	32,30	92,37	88,85	48,29
Norg	1,53	2,82	3,67	1,53
C/N	11	16	12	16
MOR	20,27	66,51	65,83	20,72
GE	62,75	72,01	74,09	42,90
NnH	0,98	1,65	1,73	0,78
NnH/Norg	63,75	58,39	47,25	50,73
% sms	•	•	•	•
Р	0,30	0,22	0,30	0,50
K	1,17	0,39	0,59	1,63
Ca	6,58	1,18	1,25	11,96
Mg	0,45	0,09	0,12	1,61
Na	0,09	0,05	0,06	0,34
Fe	0,79	0,06	0,12	0,46
mg kg ⁻¹ sms				
Zn	208	13	32	142
Mn	190	17	25	268
Cu	31	46	69	31 8 7
Ni	10	1	5	8
Cr	7	1	3	7
Pb	16	1	6	3
Cd	0,27	0,14	0,16	0,16
Hg	n.m.	n.m.	n.m.	n.m.
g smh				
< 2 mm	57,55	31,18	60,01	10,66
2-5 mm	23,88	60,21	33,27	35,29
5-6,3 mm	6,02	2,71	0,73	10,78
6,3-12,5 mm	8,61	3,63	2,16	22,36
12,5-40 mm	3,94	2,17	3,82	20,92
> 40 mm	0,00	0,10	0,00	0,00
Impurezas % sms	n.d.	n.d.	n.d.	n.d.
TA	5	5	5	5

Anejo 5. Resumen numérico descriptivo

TODAS	pН	CE	Н	NNH4	NNO3	MOT	Norg	C/N	MOR	GE	NnH	NnH/Norg
Media	7,84	6,89	29,52	1621	209	52,57	1,97	13,98	24,08	46,33	0,98	49,60
Mínimo	5,48	0,14	7,95	11	2	7,99	0,15	4,39	3,26	21,77	0,06	12,83
Máximo	9,27	14,17	70,71	13291	6253	91,06	4,00	31,00	66,51	74,09	1,83	85,79
Mediana	7,88	7,27	28,98	1097	21	52,06	1,92	13,24	23,96	46,12	0,99	49,17
S (desvest)	0,65	2,80	10,51	1859	674	12,10	0,56	4,09	6,51	7,22	0,31	10,90
CV (S*100/X)	8 <u>,</u> 30	40,69	35,59	115	322	23,02	28,26	29,25	27,03	15,58	32,12	21,98
FORM												
Media	8,09	7,30	27,80	1143	124	53,61	2,10	13,21	25,53	48,05	1,11	53,13
Mínimo	6,40	2,12	11,96	26	7	31,62	1,18	9,00	14,67	38,52	0,59	36,51
Máximo	9,13	14,17	60,69	3738	2790	76,04	3,15	31,00	34,75	63,13	1,82	81,37
Mediana	8,16	7,51	27,59	966	22	53,31	2,13	12,77	25,95	47,88	1,10	52,57
S (desvest)	0,55	2,35	8,91	784	337	9,59	0,41	3,05	4,11	5,10	0,25	8,78
CV (S*100/X)	6 <u>,</u> 76	32,14	32,04	69	271	17,89	19,57	23,05	16,11	10,61	22,76	16,52
RSU												
Media	7,50	8,48	27,34	1876	214	48,50	1,55	15,89	18,69	39,11	0,64	41,17
Mínimo	6,27	3,42	11,42	16	0	32,60	0,97	10,48	12,97	31,57	0,40	25,38
Máximo	8,56	11,20	48,44	4209	4254	65,00	2,26	23,15	23,36	53,50	1,16	85,79
Mediana	7,60	8,63	27,05	1754	14	48,70	1,53	15,54	18,56	38,50	0,59	39,83
S (desvest)	0,58	1,76	9,72	1075	777	8,87	0,29	3,19	2,62	5,18	0,16	9,03
CV (S*100/X)	7,67	20,74	35,55	57	364	18,29	18,80	20,10	14,04	13,24	25,33	21,94

TODAS	Р	K	Ca	Mg	Na	Fe	Zn	Mn	Cu	Ni	Cr	Pb	Cd	Hg
Media	0,78	1,12	7,70	0,63	0,65	1,11	340	221	141	42	47	69	0,51	1016
Mínimo	0,03	0,07	0,94	0,09	0,05	0,06	13	17	11	1	1	1	0,03	23
Máximo	3,53	3,52	28,05	1,95	2,44	6,73	1836	2216	594	287	816	841	3,18	6571
Mediana	0,63	1,01	6,79	0,59	0,62	0,96	238	190	104	34	29	48	0,35	600
S (desvest)	0,53	0,62	4,28	0,28	0,35	0,73	280	170	114	36	69	77	0,44	1243
CV (S*100/X)	67,24	55,46	55,51	45,24	54,29	66,10	82	77	81	85	148	112	86,22	122
FORM														
Media	0,71	1,34	7,60	0,57	0,78	0,98	215	215	103	36	32	54	0,35	884
Mínimo	0,25	0,27	1,90	0,22	0,16	0,29	71	82	15	7	7	6	0,06	126
Máximo	1,53	3,52	28,05	1,12	2,44	3,02	914	2216	513	176	138	289	1,42	3662
Mediana	0,67	1,18	6,54	0,57	0,71	0,88	186	182	84	31	26	46	0,29	205
S (desvest)	0,26	0,55	4,33	0,18	0,36	0,42	110	200	75	26	22	36	0,23	1165
CV (S*100/X)	37,38	41,03	56,91	31,49	46,04	42,79	51	93	73	73	69	66	65,99	132
				/										
RSU														
Media	0,47	0,67	8,60	0,70	0,73	1,23	557	203	244	69	84	173	0,99	1324
Mínimo	0,33	0,27	3,48	0,17	0,45	0,58	205	111	84	18	15	62	0,21	260
Máximo	0,96	1,03	13,84	1,68	1,14	2,75	1540	518	515	177	270	841	2,11	6571
Mediana	0,44	0,71	8,59	0,61	0,72	1,07	472	192	232	58	67	144	0,98	928
S (desvest)	0,14	0,19	2,60	0,34	0,16	0,52	288	77	98	34	58	126	0,48	1372
CV (S*100/X)	28,58	28,67	30,21	49,05	22,43	42,02	52	38	40	49	69	73	48,45	104

-	TODAC	FORM	DCII
	TODAS	FORM	RSU CV (S*100/V)
	CV (S*100/X)	CV (S*100/X)	CV (S*100/X)
pН	8,30	6,76	7,67
CE	40,69	32,14	20,74
Н	35,59	32,04	35,55
NNH4	115	69	57
NNO3	322	271	364
MOT	23,02	17,89	18,29
Norg	28,26	19,57	18,80
C/N	29,25	23,05	20,10
MOR	27,03	16,11	14,04
GE	15,58	10,61	13,24
NnH	32,12	22,76	25,33
NnH/Norg	21,98	16,52	21,94
Р	67,24	37,38	28,58
K	55,46	41,03	28,67
Ca	55,51	56,91	30,21
Mg	45,24	31,49	49,05
Na	54,29	46,04	22,43
Fe	66,10	42,79	42,02
Zn	82	51	52
Mn	77	93	38
Cu	81	73	40
Ni	85	73	49
Cr	148	69	69
Pb	112	66	73
Cd	86,22	65,99	48,45
Hg	122	132	104

Anejo 6. Características de las plantas visitadas

PLANTA	Origen	Material	CTP	CRP	RV	RSU	FORM	LODOS	LODOS IA	ESTIERCOL	CARNIC	OS OTROS	Planta
Utrera	Andalucia	RSU	55.000	40.000	0	40.000	0	0	0	0	0	0	
Marchena	;Andalucia	RSU	45.000	40.000	: 0	40.000	0	. 0	0	: 0	. 0	0	ofreci
Alcalá del Río	Andalucia	RSU	93.000	105.000	0	105.000	0	0	0	0	0	0	tratad
Montalbán	Andalucia	RSU	160.000	84.000	i 0	84.000	0	0	0	0	0	0	
Córdoba	Andalucia	FORM		38.250	3.500	: 0	24.000	14.250	0	0	0	0	
Córdoba	Andalucia	LODOS		38.250	3.500	0	24.000	14.250	0	0	0	0	Las cit
Villarasa	Andalucia	RSU	227.000	220.000	0	220.000	0	0	0	0	0	0	
Los Barrios	Andalucia	RSU	120.000	190.000	0	190.000	0	0	0	0	0	0	
Albox	Andalucia	RSU	70.000	57.000	. 0	57.000	0	. 0	0	0	0	0 !	CTP:
Mijas	Andalucia	RSU	44.000	57.000	0	57.000	0	0	0	0	0	0	
Casares	Andalucia	RSU	260.000	230.000	0	230.000	0	0	0	0	0	0	
Alhendín	Andalucia	RSU	165.000	35.500	0	35.500	0	0	0	0	0	0	CRP:
Vélez Benaudalla	Andalucia	RSU	200.000	75.000	† -	75.000		i	i 0	0			
Alcalá de Guadaira	Andalucia	RSU	35.000	600.000		600.000	0			0			5 14 5
Quart de Poblet	Valencia	RSU	250.000	600.000	·	600.000		j	·	ļ ö	į 0		RV: R
Calles	Valencia	LODOS	30.000	20.000	10.000	000.000	ö	20.000	† 0	† 0	⊹ ö		
Guadassuar	Valencia	RSU	250.000	235.000	10.000	235.000		0	¦ 0		⊹ 0		DCII.
		RSU	45.000	99.482	† 0	99.482	0		† 0	·····			RSU:
Ador Villena	Valencia		45.000	65.000				0			0		1
	Valencia	RSU				65.000	0	4	0	<u> </u>		i0i	FORM
Crevillente	Valencia	RSU	78.000	60.000	3.000	60.000	0	0	0	0	0	0	FORM
El Rebolledo	Valencia	RSU		<u> </u>	÷		0	0	0	0	0	0	separa
Golmayo	C. Leon	RSU	10.500	32.000	<u> </u>	32.000	0	0_	0	j 0	<u> </u>	i0i	Separe
Burgos RSU	C. Leon	RSU	75.000	57.224	1.859	57.224	0	0	0	0	0	0	
Zamora	C. Leon	RSU	100.000	74.000	358	74.000	0	. 0	. 0	0	. 0	. 0	LODO
Toledo	C. La Manch		93.000	93.000	į 0	93.000	0	0	j 0	j 0	j 0	_ j _ 0 _ j	
Burgos LODOS	C. Leon	LODOS	60.000	48.000	. 0	0	0	48.000	0	0	0	0	
Valladolid	C. Leon	RSU	210.000	170.048	0	100.426	67.000	2.622	0	0	0	0	LODO
Los Huertos	C. Leon	RSU	60.000	68.000	j 0	68.000	0	0	0	0	0	0	
Urraca Miguel	C. Leon	RSU		0	0	T	0	0	0	0	0	0	
Alcazar de San Juan	C. La Manch	RSU	75.000	70.000	0	70.000	0	0	0	0	0	0 !	CARN
Almagro	C. La Manch			i 0		T	i 0	i 0	i 0	i 0	0	i 0 i	
Albacete	C. La Manch		75.000	113.000	·	113.000	0	0	0	0	0	0	
Hellín	C. La Manch		54.000	49.000	0	49.000	0	0	0	0	0	0	
Almudevar	Aragon	ESTIERCOL		20.000	· - · - · - · ·	0	ō	ii	0	20.000	0		
Montejurra	Pamplona	FORM	16.000	11.300	÷	† 0	8.500	1.800	1.000	0	0		
Arazuri	Pamplona	LODOS	30.000	9.265	10.711	† 0	0.000	9.265	0	·			
SOTS	Catalunya	ESTIERCOL		36.740	12.250	† 0	1.740	0	32.000	3.000		·	
SOTS	Catalunya	MIXTO		36.740	12.250	+	1.740	ļ 0	32.000	3.000	∤ 0	·	
Fervosa	Catalunya	ESTIERCOL	80.000	39.000	5.500	÷	0	15.000	15.000	9.000			
St. Martí d'Albars		LODOS	70.000	44.211	240.000						<u>~</u>		
	Catalunya					0	0	44.211	ļ <u>0</u>	0	<u>0</u>		
Manresa EDAR	Catalunya	LODOS	10.000	10.000	2.000	0	0	10.000	0	0	0		1
Llinars V. Sr. Pou	Catalunya	ESTIERCOL	12.500	7.500	0	0	0	0	0	7.500	0	0	
Sant Cugat	Catalunya	FORM	12.000	1.500	1.950	0	1.500	0	0	0	0	i 0 i	
Segrià	Catalunya	MIXTO	55.000	52.250	2.750	0	0	16.500	11.000	8.250	5.500		1
Segrià	Catalunya	MIXTO	55.000	52.250	2.750	0	0	16.500		8.250	5.500		1
Segrià	Catalunya	ECOLOGICO	55.000	52.250	2.750	0	0	16.500	11.000	8.250	5.500	11.000	1
Feresp	Catalunya	MIXTO	20.000	0	i	<u> </u>		i	į	i 	į. 		
Inferin	Catalunya	MIXTO		12.000	0	0	0	0	0	12.000		0	1
Agroviver S.L (a gran		MIXTO		3.188	1.561	0	0	ĭ 0	0	2.466	i 0	723	1
Agroviver S.L (a gran		ESTIERCOL		3.188	1.561	0	0	0	0	2.466	0	723	1
Blanes EDAR	Catalunya	LODOS	8.000	8.000	[0	0	8.000	0	0	0	0	1
Vilablareix	Catalunya	ILODOS	2.700	40.000	ī	0	0	40.000	i 0	0	i 0	0 1	1
Agua y jardín	La Rioja	R.VEG		0	175	0	0	0	0	0	0	0	1
BioRiojano	La Rioja	ESTIERCOL	50.000	0	0	÷	0		0		0		1
BioRiojano	La Rioja	ESTIERCOL	9.360	0		0	0	i	0	i	i 0		
Alcoholera	La Rioja	R.VEG		30.000	÷	÷	ö	÷0	÷		0	30.000	
Alcoholera	La Rioja	R.VEG		30.000	÷	+	ö	·	ļ 0	·	ļ 0	30.000	
o o o	;=u rvioja			. 00.000	; 0	: 0			. •	: 0	: 0	: 00.000	

Plantas muestreadas con el proyecto IGME y que han ofrecido datos sobre sus procesos y cantidades tratadas.

as cifras se expresan en toneladas al año.

CTP: Capacidad teórica de la planta.

CRP: Capacidad real de la planta.

RV: Restos vegetales.

RSU: Residuo sólido urbano.

FORM: Fracción orgánica de residuo municipal

eparada en origen.

LODOS: Lodos de EDAR.

LODOS IA: Lodos industria alimentaria

CARNICOS: Residuos cárnicos

PLANTA	Origen	Material	RO/RV %	RC/RV %	COMPOST	COMVEND	PRECIO	DESTINO	ETAPAS	T.RECP T.DE	C T.MAI	T.ALM	T.TOTAL	RO/RV %: porcentaje de residuo orgánico respe
Jtrera	Andalucia	RSU	100	0	6.750	1.000	9,02	AGR.	RCP.DESC.ALM.	1 60			61	, , , , , , , , , , , , , , , , , , , ,
archena	Andalucia	RSU	100		3.000	1.500	9,02	AGR.	RCP.DESC.ALM.	1 : 56		75	132	restos vegetales.
Icalá del Río	Andalucia	RSU	100	10				1	1	···		1		RC/RV %: porcentaje de fracción recirculada respe
lontalbán	Andalucia	RSU	100	i	3.500	500	21,04	AGR.REST	RCP.DESC.MAD.AL	1 25	75	730	831	restos vegetales.
órdoba	Andalucia	FORM	75	0	6.000	6.000	24,04	AGR.	RCP.DESC.MAD.AL		56	365	478	i i i i i i i i i i i i i i i i i i i
Córdoba	Andalucia	LODOS	60	· 0	2.000	0	0.00		RCP.DESC.ALM.	1 56	56	Ţ-::-	113	
/illarasa	Andalucia	RSU	100	i	30.000	20.000	6,01	AGR.	RCP.DESC.ALM.	1 90		165	256	COMPOST: compost producido (T/año)
os Barrios	Andalucia	RSU	100	0			0,00		RCP.DESC.ALM.	1 56		180	237	COMVEND: compost vendido (T/año)
Albox	Andalucia	RSU	100	ļ -	10.837		60.10	AGR.	RCP.DESC.ALM.	2 56		270	332	PRECIO: precio del compost (€/T)
/lijas	Andalucia	RSU	100	i	2.800	2.800	0,00		RCP.DESC.ALM.	1 15	31	365	412	DESTINO : destino principal del compost.
Casares	Andalucia	RSU	100		3.256		9,02		RCP.DESC.ALM.	1 56		255	312	
Alhendín	Andalucia	RSU	100	0	2.990	2.990	30,05		RCP.DESC.ALM.	1 63		180	244	SINCOM. Sin comercializar
élez Benaudalla	Andalucia	RSU	100	i	5.250	5.000	30,05		RCP.DESC.ALM.	1 63		110	174	AGR. Agricultura
Alcalá de Guadaira	Andalucia	RSU	100	0	15.000		10,00	AGR.	RCP.DESC.MAD.AL		90	180	174	JARD. jardinería
Quart de Poblet	Valencia	RSU	100	ļ 0		i		1.01.	RCP.DESC.ALM.	1 30	60	i	91	
alles	Valencia	LODOS	75	† <u>*</u>				· 	RCP.DESC.MAD.AL		30	÷	61	REST. restauración
Suadassuar	Valencia	RSU	100		36.000	35.000		AGR IAPP	RCP.DESC.MAD.AL	1 20	44		65	
Ador	Valencia	RSU	100	·	12.220	12.220		AGR.JARL	RCP.DESC.ALM.	1 55	35	÷	91	ETAPAS:
/illena	Valencia	RSU	100	i	28.000	28.000			RCP.DESC.ALM.	1 21	21	÷-′7	89	
				į <u>0</u>								J		RCP.: recepción
revillente I Rebolledo	Valencia	RSU	83	0	12.000	12.000		AGR.REST	RCP.DESC.ALM.	1 18 V 7	53	0	71	DESC. : descomposición
	Valencia	RSU RSU	100	0	4 200			AGR.	RCP.DESC.MAD.ALI		35	÷	42	MAD.: maduración
Golmayo	C. Leon		100	į <u>0</u>	4.300	1.585	0,00		RCP.DESC.ALM.	14 49	105	<u> 0</u>	168	
Burgos RSU	C. Leon	RSU	75	0	12.000	1.938	12,02		RCP.DESC.ALM.	2 18	56_	0	75	ALM.: almacenamiento
Zamora	C. Leon	RSU	96	0	3.250		0,00	AGR.RES	RCP.DESC.ALM.	1 15	44	64	124	Duración en días de cada una de las eta
oledo	C. La Manch		100	00	6.515			. ļ	RCP.DESC.MAD.ALI		<u> </u>	ļ	15	contempladas las etapas:
Burgos LODOS	C. Leon	LODOS	100	0	12.500	5.000		AGR.	RCP.DESC.ALM.	0 135		64	135	
/alladolid	C. Leon	RSU	100	0	8.000	8.000	5,00	AGR.REST	RCP.DESC.MAD.AL		s/n_	ļ. —	25	T.RECP: recepción
os Huertos	C. Leon	RSU	100	<u> </u>	4.420	4.420	4,51	AGR.	RCP.DESC.MAD.AL		28	S/N	77	T.DESC: descomposicición
Urraca Miguel	C. Leon	RSU	25	00	: 			AGR.	RCP.DESC.MAD.AL		60	<u></u>	44	T.MAD: maduración
Alcazar de San Juan			100	0	11.000	2.250		AGR.	RCP.DESC.ALM.	1 75		135	211	T.ALM: almacenaje
Almagro	C. La Manch		75	10	<u>[</u> _	!		. į. – –	RCP.DESC.MAD.AL	3 12	75	243	332	l I
Albacete	C. La Manch		100	0	24.062	90		AGR.	RCP.DESC.ALM.	1 63		0	64	T.TOTAL: duración total
Hellín	C. La Manch		100	. 0	5.000	3.500	7,51	AGR.	RCP.DESC.MAD.AL		25	213	259	i
Almudevar	Aragon	ESTIERCOL	100	i 0	5.000	5.000	12,00	.i	RCP.DESC.ALM.	204	: <u>L</u>	<u>i </u>	204	
Montejurra	Pamplona	FORM	100	0	904	904	26,59		RCP.DESC.ALM.	60		<u>:</u>	60	
Arazuri	Pamplona	LODOS	28	. 0	9.000	9.000	0,22		RCP.DESC.MAD.AL		30	<u> </u>	120	
SOTS	Catalunya	ESTIERCOL		50	19.362	19.362	0,00	AGR.	RCP.DESC.MAD.AL	1 30	180	j 0	211	
SOTS	Catalunya	MIXTO	50	50	8.298	8.298	17,00	JARD.	RCP.DESC.MAD.AL	1 30	180	0	211	
ervosa	Catalunya	ESTIERCOL	33	16	18.000	18.000		AGR.JARD	RCP.DESC.ALM.	1 75		34	110	
St. Martí d'Albars	Catalunya	LODOS	33	50	[i.	RCP.DESC.MAD.ALI			68	90	
Manresa EDAR	Catalunya	LODOS	33	50	5.500	5.500	9,00	JARD.	RCP.DESC.ALM.	0 15	E	68	83	
linars V. Sr. Pou	Catalunya	ESTIERCOL	100	0	4.000	4.000	11,40	AGR.JARD	RCP.DESC.ALM.	120	77	0	120	
Sant Cugat	Catalunya	FORM	20	25	900	900		JARD.	RCP.DESC.MAD.AL	1 28	70	35	99	i [
Segrià	Catalunya	MIXTO	100	0	20.000	20.000	12,00	AGR.	RCP.DESC.MAD.AL		120	90	212	
Segrià	Catalunya	MIXTO	80	10	r	!		·	RCP.DESC.MAD.AL	2 15	120	90	212	
Segrià	Catalunya	ECOLOGICO		1	; — : 			AGR.	RCP.DESC.MAD.ALI		360	i		i I
eresp	Catalunya	MIXTO		0	[AGR.	RCP.DESC.MAD.AL		55	90	151	
nferin	Catalunya	MIXTO	100	10	6.000	!		AGR.	RCP.DESC.ALM.	1 + 365		548	914	
groviver S.L (a gran		MIXTO		0	1.350	1.350		JARD.	RCP.DESC.ALM.	1 120		90	211	i I
groviver S.L (a gran	€ Catalunya	ESTIERCOL	16	0	4.950	4.950		JARD.	RCP.DESC.ALM.	1 120		90	211	
Blanes EDAR	Catalunya	LODOS	22	49	2.500	2.500	0,00	JARD.	RCP.DESC.ALM.	2 + 14		180	196	
/ilablareix	Catalunya	LODOS	20	33				AGR.	IRCP.DESC.MAD.ALI		28	1 16	90	
Agua y jardín	La Rioja	R.VEG	0	33	}		0,00	JARD.	RCP.DESC.MAD.AL	+ . 43		150	150	
BioRiojano	La Rioja	ESTIERCOL	100	·	21.250	21.250	0,00 4,81		RCP.DESC.ALM.	14 135		30	165	
BioRiojano BioRiojano		ESTIERCOL	100	i0	3.750	3.750	4,81 5.00		RCP.DESC.ALM.	14 135		30 -	165	
Alcoholera	La Rioja			i										
	La Rioja	R.VEG	100	i0	21.000	_21.000_	27,50	JARD.	RCP.DESC.ALM.	105 120		150	375	t
Alcoholera	La Rioja	R.VEG	100	0			56,00	JARD.	RCP.DESC.MAD.AL	105 120) 1	150	376	

PLANTA	Origen	Material	TIPO DESC	TIPO MAD	TIPO ALM	ALT.DESC	ANCH,DESC	ALT.MAD	ANCH,MAD	F.REG.DESC	F.REG.MAD	A.DESC	A.MAD
trera	Andalucia	RSU	P.VL.			<u> </u>				NOREG	NOREG		
rchena	Andalucia	RSU	M.VL.			†		:		NOREG	NOREG		
alá del Río	Andalucia	RSU	P.VL.	[1,5	2	ļ			NOREG		
ontalbán	Andalucia	RSU	P.VL.	P.VL.		3	15	i		S/N	1	POZO	POZO
rdoba	Andalucia	FORM	P.VL.	P.VL.		2,5		!		S/N	NOREG		
rdoba	Andalucia	LODOS	P.VL.	P.VL.		2,5		!		NOREG	NOREG		
arasa	Andalucia	RSU	M.VL.	: -: :		4,5		i	;	NOREG	NOREG		·
Barrios	Andalucia	RSU	M.VL.			4		!		NOREG	NOREG		
oox	Andalucia	RSU	M.VL.			1,5		ļ -		NOREG	NOREG		· · · · · · · ·
jas	Andalucia	RSU	P.VL.	P.VL.	M.ES.	3		3		S/N	S/N	POZO	POZO
sares	Andalucia	RSU	M.VL.			4		¦ -		S/N	NOREG	LIX	1.020
endín	Andalucia	RSU	P.VL.	i	M.ES.	 3	i	i			NOREG	POZO	i
z Benaudalla	Andalucia	RSU	P.VL.		M.ES.	† <u>3</u>					NOREG	RED	
alá de Guadaira	Andalucia	RSU	P.VL.	P.VL.	IVI.LG.	ļ 	Ļ	ļ	L	! : S/N	S/N	EIX	LIX
rt de Poblet		RSU	M.ES.	M.ES.		 		i		NOREG	NOREG	<u>Li^</u>	
	Valencia	LODOS				!	<u>-</u>	·		NOREG	NUREG		RED
les	Valencia		TRCH.IM.	P.ES.		ļ <u>-</u>	∟ <u>2</u> 10		L		! <u>}</u> !		
adassuar	Valencia	RSU	TRCH.IM.	P.VL.		3,5	10	2,5	10	NOREG	1		LIX
or	Valencia	RSU	P.VL.	P.VL.		÷				NOREG	NOREG		
ena	Valencia	RSU	P.VL.	P.VL.		3	1,5 5	22	1,5	ļ		LIX	LIX
villente	Valencia	RSU	P.IM.	P.VL.		3	5	4	6	; 	: 	LIX	
ebolledo	Valencia	RSU	P.VL.	P.VL.		<u> </u>	<u> </u>	22	4	NOREG	S/N		LIX
nayo	C. Leon	RSU	M.VL.	M.ES.		3,5	7	ļ	L	NOREG	NOREG		L
gos RSU	C. Leon	RSU	TNL.IM.	P.VL.		5 5	4,8 5	2		S/N	NOREG	LIX.PLV	
ora	C. Leon	RSU	TNL.IM.	P.VL.		5	5	1,5	3	S/N	S/N	LIX	RED
lo	C. La Manc		TNL.AS.	P.VL.		<u>i</u>		i		S/N	ii		
os LODOS	C. Leon	LODOS	M.VL.			3,5	5			NOREG	NOREG		
dolid	C. Leon	RSU	TNL.IM.	P.VL.	M.ES.	5	6	!		S/N	1/7	LIX	
Huertos	C. Leon	RSU	TNL.IM.	P.VL.			6	2,5	3	S/N	i S/N i	LIX	LIX
ica Miguel	C. Leon	RSU	TNL.IM.	P.VL.		i 6 . 5	4			S/N	S/N	LIX	LIX
zar de San Juan			P.VL.			Ţ		!		S/N	NOREG	RED	
igro	C. La Manc		TNL.AS.	P.VL.		i		;		S/N	i	LIX	RED
ete	C. La Manc		M.VL.	· — · · · · · · · —		3,5		!		1	NOREG	LIX.PLV.RED	 -
) I	C. La Manc		P.VL.	P.ES.	M.ES.	† - 27 -				S/N	NOREG	LIX.PLV	LIX
devar	Aragon	ESTIERCOL				1,2	6	i		NOREG	NOREG		
ejurra	Pamplona	FORM	P.VL.			1,5	<u>ă</u>			1	NOREG	RED	
uri	Pamplona	LODOS	M.VL.	M.VL.		3	9	3	9	NOREG	NOREG		
S	Catalunya	ESTIERCOL		P.VL.		† - 4	<u>-</u>	<u>-</u>	<u>-</u>	NOREG	S/N		LIX.PLV
ss	Catalunya	MIXTO	P.VL.	P.VL.		 4	 	4		NOREG	S/N	LIX	LIX.PLV
osa	Catalunya	ESTIERCOL		- F.VL.		3	H	i 		NOREG	NOREG	<u>Li</u> ^	LIA.FLV
vosa Martí d'Albars		LODOS	TRCH.IM.		P.VL.	‡ <u>-</u>				NOREG	NOREG		
	Catalunya	LODOS	TRCH.IM.		P.VL.	ļ	<u></u>	!		NOREG	NOREG		
resa EDAR	Catalunya					÷	<u>s</u>	i					
ars V. Sr. Pou	Catalunya	ESTIERCOL				3				S/N	NOREG	LIX	
t Cugat	Catalunya	FORM	I_TNL.IM.	P.VL.		2,7	<u> </u>	·	Ļ <u>-</u>	S/N	2	LIX	LIX.PLV
rià	Catalunya	MIXTO	P.VL.	P.VL.		2,5	4	2,5	44	NOREG	NOREG		
rià	Catalunya	MIXTO	P.VL.	P.VL.		2,5	44	2,5	4	NOREG	NOREG		
rià	Catalunya	ECOLOGIC		P.VL.		2,5	4	2,5	4	NOREG	NOREG		ļ
sp	Catalunya	MIXTO	P.VL.	P.VL.		1,8	4,5	1,8	4,5	S/N	S/N	LIX	LIX
n	Catalunya	MIXTO	P.VL.							S/N	NOREG	LIX	
viver S.L (a gran		MIXTO	P.VL.		P.VL.	1,2	2	i		NOREG	NOREG		
viver S.L (a gran		ESTIERCOL	P.VL.		P.VL.	1,2	2			NOREG	NOREG		
es EDAR	Catalunya	LODOS	TNL.IM.		M.ES.	3	6	!		NOREG	NOREG		
lareix	Catalunya	LODOS	P.VL.	P.VL.		1,2	3	1,2	3	NOREG	NOREG		i
a y jardín	La Rioja	R.VEG	M.VL.		M.ES.	1,2	3,5	'=		S/N	NOREG	LIX	
Riojano	La Rioja	ESTIERCOL				+ <u>~</u>	-			NOREG	NOREG		
Riojano	La Rioja	ESTIERCOL				i		i		NOREG	NOREG		i
oholera	La Rioja	R.VEG	P.VL.		M.ES.	2,5	4	i		NOREG	NOREG		
oholera	La Rioja	R.VEG	P.VL.	i	M.ES.	2,5	<u>-</u>		H	NOREG	NOREG		
JIIOIGIA	La Noja	IN. VLG	F.VL.		IVI.LG.	2,0	J			NONLO	NONLO		

oducción empleado en cada una de las

istema en la descomposición. istema en la maduración. stema de almacenaje.

> .: Pila volteada :: Pila aspirada .: Meseta volteada .: Meseta estática

I.IM.: Trinchera impulsión IM.: Túnel impulsión AS.: Túnel aspiración

altura aproximada de la matriz

la descomposición.

anchura aproximada de la matriz

la descomposición.

ura aproximada de la matriz compostable

anchura aproximada de la matriz la maduración.

Frecuencia de riego en la

Frecuencia de riego en la maduración

rvalo entre riegos, en días.

REG.: sin riego según necesidades

de agua de riego utilizada en la

de agua de riego utilizada en la

lixiviados pluviales red O.: pozo

55 Informe 2003-2005

PLANTA	Material	F.VOLT.DESC.	F.VOLT.MAD	PROD.LIX.	SEP.PLV.	RECG.LIX.	RECG.PLV	SEP.INI	SEP.FIN DESC	SEP.AFINO	LUZ.INI	LUZ.DESC	LUZ.AFIN
Utrera	RSU	7	i	SI	L	NO	NO	VOL.TRIA.TRM	SIN SEP DESC	TRM.TDM	90		15
Marchena	¦RSU	1		SI		BALA		VOL.TRIA.TRM.MGT	SIN SEP DESC	MLL.TDM	100		15
Alcalá del Río	RSU			SI	NO	NO	NO				80		25
Montalbán	RSU	S/N	7	SI	NO	DEPC	NO	VOL.TRM.MGT	SIN SEP DESC	TRM.CRB.TDM	70		15
Córdoba	FORM	2	15	T	:	·		VOL.TRIA.TRM	TRM.TDM		80	12	
Córdoba	LODOS	2	15	T				SIN SEP INI	SIN SEP DESC		7		[
Villarasa	RSU	11	÷	SI	NO	BALA	NO	VOL.TRM.MGT	SIN SEP DESC	TRM	25		12
Los Barrios	RSU	7	†	SI	NO	BALA	NO	VOL.TRIA.TRM.MGT	SIN SEP DESC	TRM.TDM	1		15
Albox	RSU	. 7	Ī —	SI	. NO	BALA	NO	VOL.TRM.MGT	SIN SEP DESC	TRM.TDM	100		12
Mijas	RSU	2	10	SI	NO	DEPC	NO	VOL.TRM.MGT	SIN SEP DESC	TRM.TDM	100		19
Casares	RSU	7	ļ —	SI	NO	BALA	NO	VOL.TRM.MGT	SIN SEP DESC	TDM.CRB	90		9
Alhendín	RSU	7	†	SI	SI	BALA	NO	VOL.TRM.MGT	SIN SEP DESC	TRM.TDM	80		14
Vélez Benaudalla	RSU	7	 	SI	SI	BALA	NO	1	ion och beco				
Alcalá de Guadaira	RSU	3	S/N	SI	NO NO	BALA	NO	TRM	TRM	TRM.TDM	110	30	15
Quart de Poblet	RSU	0		÷		- DADA		VOL.TRIA.TRM	MLL	MLL.TDM	70	40	15
Calles	LODOS		!	SI		DEPC	NO	SIN SEP INI	SIN SEP DESC	TRM			8
Guadassuar	RSU	9	11	SI	SI SI	DEPC	INO	VOL.TRM	SIN SEP DESC	TRM.TDM.FOC			ļ
Ador	RSU	6	6	SI	NO NO	BALA	NO	VOLTRM	SIN SEP DESC	TRM.TDM.FOC	i		
Villena	RSU		+ -	01	NO NO	BALA	NO NO	MGT.TRM	SIN SEP DESC	TRM.MOLINO	100		25
		Ļ	l	SI SI			INO						
Crevillente	RSU	<u>'</u>	45	SI	SI	BALA		VOL.TRM.	TRM	TRM.TDM	120	50	20
El Rebolledo	RSU	<u>0</u>	7	SI	NO	BALA	NO	TRM	SIN SEP DESC	TRM.TDM	50		12 20
Golmayo	RSU	<u> </u>	ļ	SI	NO	L	NO	VOL.TRM.MGT.FOC	SIN SEP DESC	TRM.TDM	120		
Burgos RSU	RSU	S/N	7	SI	SI	DEPC	DEPC	VOL.TRM.MGT.FOC	SIN SEP DESC	TRM.TDM	90		20
Zamora	RSU	0	11	SI	. SI	BALA	NO	VOL.TRIA.TRM	SIN SEP DESC	TRM.TDM	80		15
Toledo	RSU	S/N	7	L	<u> </u>	L	Ĺ	VOL.TRIA.TRM	SIN SEP DESC	.L	80		Ļ
Burgos LODOS	LODOS	20	¦	SI	NO	BALA	NO	SIN SEP INI	SIN SEP DESC	SIN AFINO			L
Valladolid	RSU	S/N	7	SI	SI	BALA	NO	TRM	TRM	SIN AFINO	90	12	<u> </u>
Los Huertos	RSU	S/N	7	SI	SI	DEPC	BALA	VOL.TRM.MGT.FOC	SIN SEP DESC	TRM.TDM	j 80 j		16
Urraca Miguel	RSU		17	SI	NO	DEPC	NO	VOL.TRM.MGT.CRB.F		TRM	80		15
Alcazar de San Juan	RSU	7	ļ —————————	SI	SI	BALA	NO	VOL.TRM.MGT.FOC	SIN SEP DESC	TRM.CRB.TDM	90		20
Almagro	RSU	S/N	8	SI	NO	BALA	NO	VOL.TRIA.TRM.MGT	SIN SEP DESC	TRM.TDM	i i		12,5
Albacete	RSU	7	!	SI	NO	BALA	NO	VOL.TRM.MGT	SIN SEP DESC	TRM.CRB.TDM	80		8
Hellín	RSU	3		SI	NO	BALA	NO	VOL.TRM	SIN SEP DESC	TRM.TDM	80		12
Almudevar	ESTIERCOL	30	i	SI	NO	BALA	NO	SIN SEP INI	SIN SEP DESC	picadora	i		i
Montejurra	FORM	7	†	SI	SI	BALA	BALA	TRM	SIN SEP DESC	TRM.TDM	70		15
Arazuri	LODOS	15	15	SI	SI	DEP	DEP	SIN SEP INI	SIN SEP DESC	CRB			10
SOTS	ESTIERCOL	15	7	SI	NO NO	BALA	NO	SIN SEP INI	SIN SEP DESC	SIN AFINO	i		
SOTS	MIXTO	15	7	SI	NO	BALA	BALA	SIN SEP INI	SIN SEP DESC	TRM			10
Fervosa	ESTIERCOL	7	ļ — <u>-</u>	SI	NO	BALA		SIN SEP INI	SIN SEP DESC	TRM	1		10
St. Martí d'Albars	ILODOS	S/N	7	SI	NO NO	BALA		SIN SEP INI	ISIN SEP DESC	CRB	i		15
Manresa EDAR	LODOS	1	 	NO	SI	NO	NO	SIN SEP INI	SIN SEP DESC	TRM			10
Llinars V. Sr. Pou	ESTIERCOL	22	ļ —	SI	NO	BALA	NO	SIN SEP INI	SIN SEP DESC	SIN AFINO	†		
Sant Cugat	FORM	S/N	3	SI	SI	BALA		TRM	ITRM	TRM.TDM.MGT.ASP.	80	80	12
Segrià	MIXTO	1	1	SI	NO NO	BALA	NO	SIN SEP INI	SIN SEP DESC	TRM	1 00		20
Segrià	MIXTO	i	i	SI	NO NO	BALA	NO NO	SIN SEP INI	SIN SEP DESC	TRM	ii		20
	IECOLOGICO	<u> </u>	·		NO NO	BALA	NO NO	ISIN SEP INI	ISIN SEP DESC	TRM			
Segrià	MIXTO	<u> </u>	¦ <u>¦</u>	SI SI	SI	BALA		SIN SEP INI	SIN SEP DESC	CRB			20
Feresp	MIXTO		3								ii		
Inferin		20	·	SI	NO	BALA	NO	SIN SEP INI	SIN SEP DESC	TRM	<u></u>		88
Agroviver S.L (a gran		7	ļ	SI	NO	BALA		SIN SEP INI	ISIN SEP DESC	TRM			88
Agroviver S.L (a gran		7	 	SI	NO	BALA	NO	SIN SEP INI	SIN SEP DESC	TRM			8
Blanes EDAR	LODOS	S/N	i	SI	NO	NO	NO	SIN SEP INI	SIN SEP DESC	TRM			10
Vilablareix	ILODOS	<u> 1</u>	<u> </u>	SI	NO NO	BALA		ISIN SEP INI	ISIN SEP DESC	TRM	<u> </u>		10
Agua y jardín	R.VEG		77	SI	NO	BALA	NO	SIN SEP INI	SIN SEP DESC	TRM	4		18
BioRiojano	ESTIERCOL	45	i	SI	NO	BALA	NO	TRM	SIN SEP DESC	TRM	60		<u> </u>
BioRiojano	IESTIERCOL	45	<u> </u>	SI	l NO	BALA	NO	TRM	ISIN SEP DESC	TRM	80		<u></u>
Alcoholera	R.VEG	4	1					SIN SEP INI	SIN SEP DESC				
Alcoholera	R.VEG	4	7	T		r	ŗ	SIN SEP INI	SIN SEP DESC	MOLI.CRB	7		2,5

Utilización de lixiviados y pluviales:

PROD.LIX.: Hace referencia a si se producen o no lixiviados. **SEP.PLV.**: Hace referencia a si se separan las aguas pluviales

RECG.LX.: Hace referencia a si se recogen los lixiviados. **RECG.PLV.**: Hace referencia a si se recogen y utilizan las

aguas pluviales.

BALA.: Balsa abierta **DEPC.**: Depósito cerrado

Sistemas mecánicos de selección y afino:

SEP.INI.: Sistemas utilizados al inicio del proceso. **SEP.FIN.DESC.**: Sistemas utilizados al final de la

descomposición.

SEP.AFINO.: Sistemas utilizados en el afino.

SINSEPINI.: Sin separación inicial

SINSEPDESC. Sin separación en descomposicicón.

SINAFINO.: Sin sistemas de afino.

VOL.: Separación de voluminosos

TRIA.: Línea de selección

TRM.: trommel **MGT.**: magnético

FOC.: focault

TDM.: Tabla densimétrica **CBR**: Cribas de barras **AS.**: Aspiración de plásticos

MOLI.: Molino MLL.: Malla elástica

Diámetros de paso en cada fase:

LUZ INI.: Luz de paso más pequeña en el inicio.

LUZ DESC.: Luz de paso más pequeña en la descomposición.

LUZ AFIN.: Luz de paso más pequeña en el afino.